抗LINGO-1治疗可恢复皮质脊髓束神经元的髓鞘化,改善中风后的功能恢复。

IF 5.8 2区 医学 Q1 CLINICAL NEUROLOGY
Brain Pathology Pub Date : 2024-06-30 DOI:10.1111/bpa.13280
Jan-Kolja Strecker, Antje Schmidt-Pogoda, Kai Diederich, Dario Zaremba, Frederique Wieters, Carolin Beuker, Mailin Hannah Marie Koecke, Frederike Anne Straeten, Heinz Wiendl, Jens Minnerup
{"title":"抗LINGO-1治疗可恢复皮质脊髓束神经元的髓鞘化,改善中风后的功能恢复。","authors":"Jan-Kolja Strecker, Antje Schmidt-Pogoda, Kai Diederich, Dario Zaremba, Frederique Wieters, Carolin Beuker, Mailin Hannah Marie Koecke, Frederike Anne Straeten, Heinz Wiendl, Jens Minnerup","doi":"10.1111/bpa.13280","DOIUrl":null,"url":null,"abstract":"<p><p>Demyelination of corticospinal tract neurons contributes to long-term disability after cortical stroke. Nonetheless, poststroke myelin loss has not been addressed as a therapeutic target, so far. We hypothesized that an antibody-mediated inhibition of the Nogo receptor-interacting protein (LINGO-1, leucine-rich repeat and immunoglobulin domain-containing Nogo receptor-interacting protein) may counteract myelin loss, enhance remyelination and axonal growth, and thus promote functional recovery following stroke. To verify this hypothesis, mice were subjected to photothrombotic stroke and received either an antibody against LINGO-1 (n = 19) or a control treatment (n = 18). Behavioral tests were performed to assess the effects of anti-LINGO-1 treatment on the functional recovery. Seven weeks after stroke, immunohistochemical analyses were performed to analyze the effect of anti-LINGO-1 treatment on myelination and axonal loss of corticospinal tract neurons, proliferation of oligodendrocytes and neurogenesis. Anti-LINGO-1 treatment resulted in significantly improved functional recovery (p < 0.0001, repeated measures analysis of variance), and increased neurogenesis in the hippocampus and subventricular zone of the ipsilateral hemisphere (p = 0.0094 and p = 0.032, t-test). Notably, we observed a significant increase in myelin (p = 0.0295, t-test), platelet-derived growth factor receptor α-positive oligodendrocyte precursor cells (p = 0.0356, t-test) and myelinating adenomatous polyposis coli-positive cells within the ipsilateral internal capsule of anti-LINGO-1-treated mice (p = 0.0021, t-test). In conclusion, we identified anti-LINGO-1 as the first neuroregenerative treatment that counteracts poststroke demyelination of corticospinal tract neurons, presumably by increased proliferation of myelin precursor cells, and thereby improves functional recovery. Most importantly, our study presents myelin loss as a novel therapeutic target following stroke.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":" ","pages":"e13280"},"PeriodicalIF":5.8000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-LINGO-1 treatment restores myelination of corticospinal tract neurons and improves functional recovery after stroke.\",\"authors\":\"Jan-Kolja Strecker, Antje Schmidt-Pogoda, Kai Diederich, Dario Zaremba, Frederique Wieters, Carolin Beuker, Mailin Hannah Marie Koecke, Frederike Anne Straeten, Heinz Wiendl, Jens Minnerup\",\"doi\":\"10.1111/bpa.13280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Demyelination of corticospinal tract neurons contributes to long-term disability after cortical stroke. Nonetheless, poststroke myelin loss has not been addressed as a therapeutic target, so far. We hypothesized that an antibody-mediated inhibition of the Nogo receptor-interacting protein (LINGO-1, leucine-rich repeat and immunoglobulin domain-containing Nogo receptor-interacting protein) may counteract myelin loss, enhance remyelination and axonal growth, and thus promote functional recovery following stroke. To verify this hypothesis, mice were subjected to photothrombotic stroke and received either an antibody against LINGO-1 (n = 19) or a control treatment (n = 18). Behavioral tests were performed to assess the effects of anti-LINGO-1 treatment on the functional recovery. Seven weeks after stroke, immunohistochemical analyses were performed to analyze the effect of anti-LINGO-1 treatment on myelination and axonal loss of corticospinal tract neurons, proliferation of oligodendrocytes and neurogenesis. Anti-LINGO-1 treatment resulted in significantly improved functional recovery (p < 0.0001, repeated measures analysis of variance), and increased neurogenesis in the hippocampus and subventricular zone of the ipsilateral hemisphere (p = 0.0094 and p = 0.032, t-test). Notably, we observed a significant increase in myelin (p = 0.0295, t-test), platelet-derived growth factor receptor α-positive oligodendrocyte precursor cells (p = 0.0356, t-test) and myelinating adenomatous polyposis coli-positive cells within the ipsilateral internal capsule of anti-LINGO-1-treated mice (p = 0.0021, t-test). In conclusion, we identified anti-LINGO-1 as the first neuroregenerative treatment that counteracts poststroke demyelination of corticospinal tract neurons, presumably by increased proliferation of myelin precursor cells, and thereby improves functional recovery. Most importantly, our study presents myelin loss as a novel therapeutic target following stroke.</p>\",\"PeriodicalId\":9290,\"journal\":{\"name\":\"Brain Pathology\",\"volume\":\" \",\"pages\":\"e13280\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bpa.13280\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bpa.13280","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮质脊髓束神经元脱髓鞘是导致大脑皮层中风后长期残疾的原因之一。然而,中风后髓鞘脱失迄今尚未作为治疗靶点。我们假设抗体介导的 Nogo 受体相互作用蛋白(LINGO-1,富亮氨酸重复和含免疫球蛋白结构域的 Nogo 受体相互作用蛋白)抑制剂可能会抵消髓鞘脱失,增强髓鞘再形成和轴突生长,从而促进中风后的功能恢复。为了验证这一假设,研究人员对小鼠进行了光血栓中风治疗,并为其注射了LINGO-1抗体(19只)或对照组治疗(18只)。进行行为测试以评估抗LINGO-1治疗对功能恢复的影响。中风七周后,进行免疫组化分析,分析抗LINGO-1治疗对皮质脊髓束神经元髓鞘化和轴突丢失、少突胶质细胞增殖和神经发生的影响。抗 LINGO-1 治疗明显改善了患者的功能恢复(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-LINGO-1 treatment restores myelination of corticospinal tract neurons and improves functional recovery after stroke.

Anti-LINGO-1 treatment restores myelination of corticospinal tract neurons and improves functional recovery after stroke.

Demyelination of corticospinal tract neurons contributes to long-term disability after cortical stroke. Nonetheless, poststroke myelin loss has not been addressed as a therapeutic target, so far. We hypothesized that an antibody-mediated inhibition of the Nogo receptor-interacting protein (LINGO-1, leucine-rich repeat and immunoglobulin domain-containing Nogo receptor-interacting protein) may counteract myelin loss, enhance remyelination and axonal growth, and thus promote functional recovery following stroke. To verify this hypothesis, mice were subjected to photothrombotic stroke and received either an antibody against LINGO-1 (n = 19) or a control treatment (n = 18). Behavioral tests were performed to assess the effects of anti-LINGO-1 treatment on the functional recovery. Seven weeks after stroke, immunohistochemical analyses were performed to analyze the effect of anti-LINGO-1 treatment on myelination and axonal loss of corticospinal tract neurons, proliferation of oligodendrocytes and neurogenesis. Anti-LINGO-1 treatment resulted in significantly improved functional recovery (p < 0.0001, repeated measures analysis of variance), and increased neurogenesis in the hippocampus and subventricular zone of the ipsilateral hemisphere (p = 0.0094 and p = 0.032, t-test). Notably, we observed a significant increase in myelin (p = 0.0295, t-test), platelet-derived growth factor receptor α-positive oligodendrocyte precursor cells (p = 0.0356, t-test) and myelinating adenomatous polyposis coli-positive cells within the ipsilateral internal capsule of anti-LINGO-1-treated mice (p = 0.0021, t-test). In conclusion, we identified anti-LINGO-1 as the first neuroregenerative treatment that counteracts poststroke demyelination of corticospinal tract neurons, presumably by increased proliferation of myelin precursor cells, and thereby improves functional recovery. Most importantly, our study presents myelin loss as a novel therapeutic target following stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Pathology
Brain Pathology 医学-病理学
CiteScore
13.20
自引率
3.10%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信