C Kitchen, A Zirikly, A Belouali, H Kharrazi, P Nestadt, H C Wilcox
{"title":"使用马里兰州自杀数据仓库进行自杀死亡预测:敏感性分析。","authors":"C Kitchen, A Zirikly, A Belouali, H Kharrazi, P Nestadt, H C Wilcox","doi":"10.1080/13811118.2024.2363227","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Nearly 50,000 Americans die each year from suicide, despite suicide death being a rare event in the context of health risk assessment and modeling. Prior research has underscored the need for contextualizing suicide risk models in terms of their potential uses and generalizability. This sensitivity analysis makes use of the Maryland Suicide Data Warehouse (MSDW) and illustrates how results inform clinical decision support.</p><p><strong>Method: </strong>A cohort of 1 million living control patients were extracted from the MSDW in addition to 1,667 patients who had died by suicide between the years 2016 and 2019 according to the Maryland Office of the Medical Examiner (OCME). Data were extracted and aggregated as part of a 4-year retrospective design. Binary logistic and two penalized regression models were deployed in a repeated fivefold cross-validation. Model performances were evaluated using sensitivity, positive predictive value (PPV), and F1, and model coefficients were ranked according to coefficient size.</p><p><strong>Results: </strong>Several features were significantly associated with patients having died by suicide, including male sex, depressive and anxiety disorder diagnoses, social needs, and prior suicidal ideation and suicide attempt. Cross-validated binary logistic regression outperformed either ridge or LASSO (least absolute shrinkage and selection operator) models but generally achieved low-to-moderate PPV and sensitivity across most thresholds and a peak F1 of 0.323.</p><p><strong>Conclusions: </strong>Suicide death prediction is constrained by the context of use, which determines the best balance of precision and recall. Predictive models must be evaluated close to the level of intervention. They may not hold up to different needs at different levels of care.</p>","PeriodicalId":8325,"journal":{"name":"Archives of Suicide Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suicide Death Prediction Using the Maryland Suicide Data Warehouse: A Sensitivity Analysis.\",\"authors\":\"C Kitchen, A Zirikly, A Belouali, H Kharrazi, P Nestadt, H C Wilcox\",\"doi\":\"10.1080/13811118.2024.2363227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Nearly 50,000 Americans die each year from suicide, despite suicide death being a rare event in the context of health risk assessment and modeling. Prior research has underscored the need for contextualizing suicide risk models in terms of their potential uses and generalizability. This sensitivity analysis makes use of the Maryland Suicide Data Warehouse (MSDW) and illustrates how results inform clinical decision support.</p><p><strong>Method: </strong>A cohort of 1 million living control patients were extracted from the MSDW in addition to 1,667 patients who had died by suicide between the years 2016 and 2019 according to the Maryland Office of the Medical Examiner (OCME). Data were extracted and aggregated as part of a 4-year retrospective design. Binary logistic and two penalized regression models were deployed in a repeated fivefold cross-validation. Model performances were evaluated using sensitivity, positive predictive value (PPV), and F1, and model coefficients were ranked according to coefficient size.</p><p><strong>Results: </strong>Several features were significantly associated with patients having died by suicide, including male sex, depressive and anxiety disorder diagnoses, social needs, and prior suicidal ideation and suicide attempt. Cross-validated binary logistic regression outperformed either ridge or LASSO (least absolute shrinkage and selection operator) models but generally achieved low-to-moderate PPV and sensitivity across most thresholds and a peak F1 of 0.323.</p><p><strong>Conclusions: </strong>Suicide death prediction is constrained by the context of use, which determines the best balance of precision and recall. Predictive models must be evaluated close to the level of intervention. They may not hold up to different needs at different levels of care.</p>\",\"PeriodicalId\":8325,\"journal\":{\"name\":\"Archives of Suicide Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Suicide Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13811118.2024.2363227\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Suicide Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13811118.2024.2363227","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Suicide Death Prediction Using the Maryland Suicide Data Warehouse: A Sensitivity Analysis.
Objective: Nearly 50,000 Americans die each year from suicide, despite suicide death being a rare event in the context of health risk assessment and modeling. Prior research has underscored the need for contextualizing suicide risk models in terms of their potential uses and generalizability. This sensitivity analysis makes use of the Maryland Suicide Data Warehouse (MSDW) and illustrates how results inform clinical decision support.
Method: A cohort of 1 million living control patients were extracted from the MSDW in addition to 1,667 patients who had died by suicide between the years 2016 and 2019 according to the Maryland Office of the Medical Examiner (OCME). Data were extracted and aggregated as part of a 4-year retrospective design. Binary logistic and two penalized regression models were deployed in a repeated fivefold cross-validation. Model performances were evaluated using sensitivity, positive predictive value (PPV), and F1, and model coefficients were ranked according to coefficient size.
Results: Several features were significantly associated with patients having died by suicide, including male sex, depressive and anxiety disorder diagnoses, social needs, and prior suicidal ideation and suicide attempt. Cross-validated binary logistic regression outperformed either ridge or LASSO (least absolute shrinkage and selection operator) models but generally achieved low-to-moderate PPV and sensitivity across most thresholds and a peak F1 of 0.323.
Conclusions: Suicide death prediction is constrained by the context of use, which determines the best balance of precision and recall. Predictive models must be evaluated close to the level of intervention. They may not hold up to different needs at different levels of care.
期刊介绍:
Archives of Suicide Research, the official journal of the International Academy of Suicide Research (IASR), is the international journal in the field of suicidology. The journal features original, refereed contributions on the study of suicide, suicidal behavior, its causes and effects, and techniques for prevention. The journal incorporates research-based and theoretical articles contributed by a diverse range of authors interested in investigating the biological, pharmacological, psychiatric, psychological, and sociological aspects of suicide.