通过单晶 X 射线衍射研究 LaAlO3 的多尺度结构。

IF 1.3 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Takashi Nishioka, Mibuki Hayashi, Hidetaka Kasai, Eiji Nishibori
{"title":"通过单晶 X 射线衍射研究 LaAlO3 的多尺度结构。","authors":"Takashi Nishioka, Mibuki Hayashi, Hidetaka Kasai, Eiji Nishibori","doi":"10.1107/S2052520624004104","DOIUrl":null,"url":null,"abstract":"<p><p>A domain-resolved synchrotron single-crystal X-ray diffraction study of a LaAlO<sub>3</sub> pseudo-merohedral twin crystal was successfully carried out in combination with powder diffraction data from the same sample. Multiscale structure information ranging from micro- to nano- to atomic scale was determined from one single crystal. There is almost no change of domain ratios at temperatures of less than 400 K indicating no movement of the domain wall. The changes in domain ratio indicating domain-wall movement were observed in the temperature range of 450 to 700 K, which is consistent with the result of the previous mechanical measurement. It is also found that the ratio of four twin components becomes equal (25%), just below phase transition temperature. These findings are important for domain engineering and theoretical studies related to LaAlO<sub>3</sub>. The temperature dependence of domain ratio was preserved in the heating and cooling cycle except for the first heating process to 840 K. Therefore, the domain structure after heating to 840 K is intrinsic to the crystal. Accurate structure parameters were determined through unit-cell parameter calibration and domain-resolved structure analysis. The method for calibration of unit-cell parameters from twin crystal data was derived and used to solve the inconsistent unit-cell parameters between single crystal and powder data in the present and previous studies.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale structure of LaAlO<sub>3</sub> from single-crystal X-ray diffraction.\",\"authors\":\"Takashi Nishioka, Mibuki Hayashi, Hidetaka Kasai, Eiji Nishibori\",\"doi\":\"10.1107/S2052520624004104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A domain-resolved synchrotron single-crystal X-ray diffraction study of a LaAlO<sub>3</sub> pseudo-merohedral twin crystal was successfully carried out in combination with powder diffraction data from the same sample. Multiscale structure information ranging from micro- to nano- to atomic scale was determined from one single crystal. There is almost no change of domain ratios at temperatures of less than 400 K indicating no movement of the domain wall. The changes in domain ratio indicating domain-wall movement were observed in the temperature range of 450 to 700 K, which is consistent with the result of the previous mechanical measurement. It is also found that the ratio of four twin components becomes equal (25%), just below phase transition temperature. These findings are important for domain engineering and theoretical studies related to LaAlO<sub>3</sub>. The temperature dependence of domain ratio was preserved in the heating and cooling cycle except for the first heating process to 840 K. Therefore, the domain structure after heating to 840 K is intrinsic to the crystal. Accurate structure parameters were determined through unit-cell parameter calibration and domain-resolved structure analysis. The method for calibration of unit-cell parameters from twin crystal data was derived and used to solve the inconsistent unit-cell parameters between single crystal and powder data in the present and previous studies.</p>\",\"PeriodicalId\":7320,\"journal\":{\"name\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S2052520624004104\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624004104","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结合同一样品的粉末衍射数据,成功地对 LaAlO3 伪正八面体孪晶进行了畴分辨同步加速器单晶 X 射线衍射研究。从一个单晶体中确定了从微尺度到纳米尺度再到原子尺度的多尺度结构信息。在低于 400 K 的温度下,畴比几乎没有变化,这表明畴壁没有移动。在 450 至 700 K 的温度范围内,观察到了表明畴壁运动的畴比变化,这与之前的机械测量结果一致。研究还发现,就在相变温度以下,四个孪晶成分的比率变为相等(25%)。这些发现对于畴工程和 LaAlO3 的相关理论研究非常重要。在加热和冷却循环过程中,除了第一次加热到 840 K 外,畴比率与温度的关系保持不变。因此,加热到 840 K 后的畴结构是晶体的固有结构。精确的结构参数是通过单位晶胞参数校准和畴分辨结构分析确定的。根据孪晶数据推导出了单胞参数校准方法,并利用该方法解决了本研究和以往研究中单晶和粉末数据单胞参数不一致的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale structure of LaAlO<sub>3</sub> from single-crystal X-ray diffraction.

Multiscale structure of LaAlO3 from single-crystal X-ray diffraction.

A domain-resolved synchrotron single-crystal X-ray diffraction study of a LaAlO3 pseudo-merohedral twin crystal was successfully carried out in combination with powder diffraction data from the same sample. Multiscale structure information ranging from micro- to nano- to atomic scale was determined from one single crystal. There is almost no change of domain ratios at temperatures of less than 400 K indicating no movement of the domain wall. The changes in domain ratio indicating domain-wall movement were observed in the temperature range of 450 to 700 K, which is consistent with the result of the previous mechanical measurement. It is also found that the ratio of four twin components becomes equal (25%), just below phase transition temperature. These findings are important for domain engineering and theoretical studies related to LaAlO3. The temperature dependence of domain ratio was preserved in the heating and cooling cycle except for the first heating process to 840 K. Therefore, the domain structure after heating to 840 K is intrinsic to the crystal. Accurate structure parameters were determined through unit-cell parameter calibration and domain-resolved structure analysis. The method for calibration of unit-cell parameters from twin crystal data was derived and used to solve the inconsistent unit-cell parameters between single crystal and powder data in the present and previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta crystallographica Section B, Structural science, crystal engineering and materials
Acta crystallographica Section B, Structural science, crystal engineering and materials CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
3.60
自引率
5.30%
发文量
0
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信