{"title":"[TFEB激活剂1能增强小胶质细胞中低聚淀粉样蛋白-β的自噬降解能力】。]","authors":"Yu-Qi Xie, Li Zhu, Xue-Ting Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of the study was to investigate the mechanism of TFEB activator 1 (TA1) improving the autophagic degradation of oligomeric amyloid-β (oAβ) in microglia, and to explore the therapeutic effect of TA1 on an in vitro model of microglia in Alzheimer's disease (AD). Primary microglia were exposed to 1 μmol/L oAβ for 0, 3, 12, and 24 h respectively to construct the in vitro model of microglia in AD. In order to explore the therapeutic effect of TA1, primary microglia were co-treated with 1 μmol/L oAβ and 1 μmol/L TA1 for 12 h. To determine the autophagy flux, the above cells were further treated with 100 nmol/L Bafilomycin A1 for 1 h before fixation. Fluorescent probes were used to detect the endocytosis or degradation of oAβ<sub>1-42</sub> by microglia. The autophagic flux was determined by infection of lentivirus mCherry-EGFP-LC3. The nuclear TFEB intensity, the autophagosomes number, and the colocalization ratio of oAβ<sub>1-42</sub> with lysosome-associated membrane protein 1 (LAMP1) or microtubule-associated protein light chain 3 (LC3), were detected by immunofluorescence assay. Expressions of autophagy-related-genes, including Lamp1, Atg5, and Map1lc3b, were detected by qRT-PCR. Results showed that prolonged oAβ exposure inhibited the endocytosis and degradation of oAβ by microglia. Meanwhile, the number of autophagosomes and autophagy flux in microglia decreased after 12 h of oAβ treatment. We further found that the nuclear expression of autophagy regulator TFEB decreased after 12 h of oAβ exposure, resulting in the decrease of autophagy genes, thus leading to the damage of autophagic degradation of oAβ. Therefore, long-term oAβ exposure was considered to construct the in vitro model of microglia in AD. After TA1 treatment, the nuclear expression of TFEB in cells was obviously upregulated. TA1 treatment upregulated the expressions of autophagy-related genes, leading to the recovery of autophagy flux. TA1 also recovered the endocytosis and degradation of oAβ by microglia. In conclusion, TA1 could improve oAβ clearance by microglia in AD by upregulating microglial TFEB-mediated autophagy, suggesting TA1 as a potential therapeutic drug for AD.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[TFEB activator 1 enhances autophagic degradation of oligomeric amyloid-β in microglia].\",\"authors\":\"Yu-Qi Xie, Li Zhu, Xue-Ting Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of the study was to investigate the mechanism of TFEB activator 1 (TA1) improving the autophagic degradation of oligomeric amyloid-β (oAβ) in microglia, and to explore the therapeutic effect of TA1 on an in vitro model of microglia in Alzheimer's disease (AD). Primary microglia were exposed to 1 μmol/L oAβ for 0, 3, 12, and 24 h respectively to construct the in vitro model of microglia in AD. In order to explore the therapeutic effect of TA1, primary microglia were co-treated with 1 μmol/L oAβ and 1 μmol/L TA1 for 12 h. To determine the autophagy flux, the above cells were further treated with 100 nmol/L Bafilomycin A1 for 1 h before fixation. Fluorescent probes were used to detect the endocytosis or degradation of oAβ<sub>1-42</sub> by microglia. The autophagic flux was determined by infection of lentivirus mCherry-EGFP-LC3. The nuclear TFEB intensity, the autophagosomes number, and the colocalization ratio of oAβ<sub>1-42</sub> with lysosome-associated membrane protein 1 (LAMP1) or microtubule-associated protein light chain 3 (LC3), were detected by immunofluorescence assay. Expressions of autophagy-related-genes, including Lamp1, Atg5, and Map1lc3b, were detected by qRT-PCR. Results showed that prolonged oAβ exposure inhibited the endocytosis and degradation of oAβ by microglia. Meanwhile, the number of autophagosomes and autophagy flux in microglia decreased after 12 h of oAβ treatment. We further found that the nuclear expression of autophagy regulator TFEB decreased after 12 h of oAβ exposure, resulting in the decrease of autophagy genes, thus leading to the damage of autophagic degradation of oAβ. Therefore, long-term oAβ exposure was considered to construct the in vitro model of microglia in AD. After TA1 treatment, the nuclear expression of TFEB in cells was obviously upregulated. TA1 treatment upregulated the expressions of autophagy-related genes, leading to the recovery of autophagy flux. TA1 also recovered the endocytosis and degradation of oAβ by microglia. In conclusion, TA1 could improve oAβ clearance by microglia in AD by upregulating microglial TFEB-mediated autophagy, suggesting TA1 as a potential therapeutic drug for AD.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[TFEB activator 1 enhances autophagic degradation of oligomeric amyloid-β in microglia].
The purpose of the study was to investigate the mechanism of TFEB activator 1 (TA1) improving the autophagic degradation of oligomeric amyloid-β (oAβ) in microglia, and to explore the therapeutic effect of TA1 on an in vitro model of microglia in Alzheimer's disease (AD). Primary microglia were exposed to 1 μmol/L oAβ for 0, 3, 12, and 24 h respectively to construct the in vitro model of microglia in AD. In order to explore the therapeutic effect of TA1, primary microglia were co-treated with 1 μmol/L oAβ and 1 μmol/L TA1 for 12 h. To determine the autophagy flux, the above cells were further treated with 100 nmol/L Bafilomycin A1 for 1 h before fixation. Fluorescent probes were used to detect the endocytosis or degradation of oAβ1-42 by microglia. The autophagic flux was determined by infection of lentivirus mCherry-EGFP-LC3. The nuclear TFEB intensity, the autophagosomes number, and the colocalization ratio of oAβ1-42 with lysosome-associated membrane protein 1 (LAMP1) or microtubule-associated protein light chain 3 (LC3), were detected by immunofluorescence assay. Expressions of autophagy-related-genes, including Lamp1, Atg5, and Map1lc3b, were detected by qRT-PCR. Results showed that prolonged oAβ exposure inhibited the endocytosis and degradation of oAβ by microglia. Meanwhile, the number of autophagosomes and autophagy flux in microglia decreased after 12 h of oAβ treatment. We further found that the nuclear expression of autophagy regulator TFEB decreased after 12 h of oAβ exposure, resulting in the decrease of autophagy genes, thus leading to the damage of autophagic degradation of oAβ. Therefore, long-term oAβ exposure was considered to construct the in vitro model of microglia in AD. After TA1 treatment, the nuclear expression of TFEB in cells was obviously upregulated. TA1 treatment upregulated the expressions of autophagy-related genes, leading to the recovery of autophagy flux. TA1 also recovered the endocytosis and degradation of oAβ by microglia. In conclusion, TA1 could improve oAβ clearance by microglia in AD by upregulating microglial TFEB-mediated autophagy, suggesting TA1 as a potential therapeutic drug for AD.
期刊介绍:
Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.