{"title":"PPInterface:三维蛋白质-蛋白质界面结构综合数据集。","authors":"","doi":"10.1016/j.jmb.2024.168686","DOIUrl":null,"url":null,"abstract":"<div><p>The PPInterface dataset contains 815,082 interface structures, providing the most comprehensive structural information on protein–protein interfaces. This resource is extracted from over 215,000 three-dimensional protein structures stored in the Protein Data Bank (PDB). The dataset contains a wide range of protein complexes, providing a wealth of information for researchers investigating the structural properties of protein–protein interactions. The accompanying web server has a user-friendly interface that allows for efficient search and download functions. Researchers can access detailed information on protein interface structures, visualize them, and explore a variety of features, increasing the dataset’s utility and accessibility.</p><p>The dataset and web server can be found at <span><span>https://3dpath.ku.edu.tr/PPInt/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168686"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002882/pdfft?md5=8c06cb4d0f228da90e95d1e5dc422504&pid=1-s2.0-S0022283624002882-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PPInterface: A Comprehensive Dataset of 3D Protein-Protein Interface Structures\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The PPInterface dataset contains 815,082 interface structures, providing the most comprehensive structural information on protein–protein interfaces. This resource is extracted from over 215,000 three-dimensional protein structures stored in the Protein Data Bank (PDB). The dataset contains a wide range of protein complexes, providing a wealth of information for researchers investigating the structural properties of protein–protein interactions. The accompanying web server has a user-friendly interface that allows for efficient search and download functions. Researchers can access detailed information on protein interface structures, visualize them, and explore a variety of features, increasing the dataset’s utility and accessibility.</p><p>The dataset and web server can be found at <span><span>https://3dpath.ku.edu.tr/PPInt/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 17\",\"pages\":\"Article 168686\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002882/pdfft?md5=8c06cb4d0f228da90e95d1e5dc422504&pid=1-s2.0-S0022283624002882-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002882\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624002882","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PPInterface: A Comprehensive Dataset of 3D Protein-Protein Interface Structures
The PPInterface dataset contains 815,082 interface structures, providing the most comprehensive structural information on protein–protein interfaces. This resource is extracted from over 215,000 three-dimensional protein structures stored in the Protein Data Bank (PDB). The dataset contains a wide range of protein complexes, providing a wealth of information for researchers investigating the structural properties of protein–protein interactions. The accompanying web server has a user-friendly interface that allows for efficient search and download functions. Researchers can access detailed information on protein interface structures, visualize them, and explore a variety of features, increasing the dataset’s utility and accessibility.
The dataset and web server can be found at https://3dpath.ku.edu.tr/PPInt/.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.