链接与迪亚科尼斯-格雷厄姆不平等现象

IF 1 2区 数学 Q1 MATHEMATICS
Christopher Cornwell, Nathan McNew
{"title":"链接与迪亚科尼斯-格雷厄姆不平等现象","authors":"Christopher Cornwell, Nathan McNew","doi":"10.1007/s00493-024-00107-1","DOIUrl":null,"url":null,"abstract":"<p>In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in <span>\\({\\mathbb {R}}^3\\)</span> that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Links and the Diaconis–Graham Inequality\",\"authors\":\"Christopher Cornwell, Nathan McNew\",\"doi\":\"10.1007/s00493-024-00107-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in <span>\\\\({\\\\mathbb {R}}^3\\\\)</span> that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00107-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00107-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1977 年,Diaconis 和 Graham 证明了两个与排列混乱度量有关的不等式,并要求对在其中一个不等式中相等的排列进行描述。他们于 2013 年首次给出了这样的表征。最近,Woo 又给出了另一个表征,使用的是\({\mathbb {R}}^3\) 中的拓扑链接,它可以与一个排列的循环图相关联。我们的研究表明,Woo 的描述还可以进一步扩展:对于任何置换,Diaconis 和 Graham 不等式中的差异都与相关链接的欧拉特征直接相关。这种联系为 Diaconis 和 Graham 的原始结果提供了新的证明。我们还从相关链接的角度描述了具有固定差异的排列组合,并发现无稳定间隔排列组合正是那些相关链接不分裂的排列组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Links and the Diaconis–Graham Inequality

Links and the Diaconis–Graham Inequality

In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in \({\mathbb {R}}^3\) that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信