{"title":"链接与迪亚科尼斯-格雷厄姆不平等现象","authors":"Christopher Cornwell, Nathan McNew","doi":"10.1007/s00493-024-00107-1","DOIUrl":null,"url":null,"abstract":"<p>In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in <span>\\({\\mathbb {R}}^3\\)</span> that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Links and the Diaconis–Graham Inequality\",\"authors\":\"Christopher Cornwell, Nathan McNew\",\"doi\":\"10.1007/s00493-024-00107-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in <span>\\\\({\\\\mathbb {R}}^3\\\\)</span> that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00107-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00107-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
1977 年,Diaconis 和 Graham 证明了两个与排列混乱度量有关的不等式,并要求对在其中一个不等式中相等的排列进行描述。他们于 2013 年首次给出了这样的表征。最近,Woo 又给出了另一个表征,使用的是\({\mathbb {R}}^3\) 中的拓扑链接,它可以与一个排列的循环图相关联。我们的研究表明,Woo 的描述还可以进一步扩展:对于任何置换,Diaconis 和 Graham 不等式中的差异都与相关链接的欧拉特征直接相关。这种联系为 Diaconis 和 Graham 的原始结果提供了新的证明。我们还从相关链接的角度描述了具有固定差异的排列组合,并发现无稳定间隔排列组合正是那些相关链接不分裂的排列组合。
In 1977 Diaconis and Graham proved two inequalities relating different measures of disarray in permutations, and asked for a characterization of those permutations for which equality holds in one of these inequalities. Such a characterization was first given in 2013. Recently, another characterization was given by Woo, using a topological link in \({\mathbb {R}}^3\) that can be associated to the cycle diagram of a permutation. We show that Woo’s characterization extends much further: for any permutation, the discrepancy in Diaconis and Graham’s inequality is directly related to the Euler characteristic of the associated link. This connection provides a new proof of the original result of Diaconis and Graham. We also characterize permutations with a fixed discrepancy in terms of their associated links and find that the stabilized-interval-free permutations are precisely those whose associated links are nonsplit.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.