地下水渗漏是恢复湿地中反硝化和一氧化二氮排放的热点

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sarah M. Klionsky, Christopher Neill, Ashley M. Helton, Beth Lawrence
{"title":"地下水渗漏是恢复湿地中反硝化和一氧化二氮排放的热点","authors":"Sarah M. Klionsky,&nbsp;Christopher Neill,&nbsp;Ashley M. Helton,&nbsp;Beth Lawrence","doi":"10.1007/s10533-024-01156-w","DOIUrl":null,"url":null,"abstract":"<div><p>Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N<sub>2</sub>O) yield of denitrification (ratio of N<sub>2</sub>O:N<sub>2</sub>O + N<sub>2</sub> gases), in situ N<sub>2</sub>O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was &gt; 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N<sub>2</sub>O yield (0.86 ± 0.16) from low elevation soils, we observed small N<sub>2</sub>O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO<sub>3</sub>− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N<sub>2</sub>O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N<sub>2</sub>O emissions. Our results indicate that N removal is concentrated where soils interact with NO<sub>3</sub>–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1041 - 1056"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01156-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland\",\"authors\":\"Sarah M. Klionsky,&nbsp;Christopher Neill,&nbsp;Ashley M. Helton,&nbsp;Beth Lawrence\",\"doi\":\"10.1007/s10533-024-01156-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N<sub>2</sub>O) yield of denitrification (ratio of N<sub>2</sub>O:N<sub>2</sub>O + N<sub>2</sub> gases), in situ N<sub>2</sub>O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was &gt; 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N<sub>2</sub>O yield (0.86 ± 0.16) from low elevation soils, we observed small N<sub>2</sub>O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO<sub>3</sub>− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N<sub>2</sub>O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N<sub>2</sub>O emissions. Our results indicate that N removal is concentrated where soils interact with NO<sub>3</sub>–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"167 8\",\"pages\":\"1041 - 1056\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-024-01156-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-024-01156-w\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01156-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对前蔓越莓农场("沼泽")进行修复的目的是重建原生湿地植被,促进冷水生境,并减少向沿岸水域输送氮(N)。不过,目前还不清楚微地形、地下水截流和植物群落等恢复设计要素如何通过反硝化作用影响氮的去除。在最近修复的河岸蔓越莓沼泽中,我们比较了 20 个地块中最高和最低海拔处以及四个侧通道地下水渗漏处的反硝化潜力、反硝化产生的一氧化二氮(N2O)(N2O:N2O + N2 气体的比率)、原位 N2O 通量、土壤化学和植物群落。低海拔地区的反硝化潜力是高海拔地区的 2 倍,其植物群落与高海拔地区不同,并且与植物物种丰富度呈正相关(Spearman's rho = 0.43)。尽管在低海拔土壤中检测到了较高的一氧化二氮产量(0.86 ± 0.16),但我们观察到的原位一氧化二氮排放量很小,这表明即使在饱和洼地中,不完全反硝化作用也很小。与典型的饱和低海拔土壤相比,地下水渗流的反硝化潜力高出一个数量级,土壤中的 NO3- 浓度也高出 100-300 倍。地下水渗流的氧化亚氮产量也很高(1.05 ± 0.15),原地氧化亚氮排放量也较高,但在空间上存在差异。我们的研究结果表明,脱氮作用主要集中在土壤与富含 NO3 的地下水相互作用的地方,但其他因素(如土壤碳(C)含量低)也限制了脱氮作用。设计恢复特征以增加地下水的停留时间,尤其是在低洼、物种丰富的区域,可能会促进恢复后的蔓越莓沼泽和其他草本河岸湿地中更多的氮衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland

Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland

Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N2O) yield of denitrification (ratio of N2O:N2O + N2 gases), in situ N2O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was > 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N2O yield (0.86 ± 0.16) from low elevation soils, we observed small N2O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO3− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N2O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N2O emissions. Our results indicate that N removal is concentrated where soils interact with NO3–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信