{"title":"实现人体尺度的磁粉成像:开发首个基于超导体选择线圈的系统。","authors":"Tuan-Anh Le, Minh Phu Bui, Yaser Hadadian, Khaled Mohamed Gadelmowla, Seungjun Oh, Chaemin Im, Seungyong Hahn, Jungwon Yoon","doi":"10.1109/TMI.2024.3419427","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ<sub>0</sub>, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ<sub>0</sub>. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ<sub>0</sub> within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm<sup>3</sup> at 2.5 T/m/μ<sub>0</sub> for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards human-scale magnetic particle imaging: development of the first system with superconductor-based selection coils.\",\"authors\":\"Tuan-Anh Le, Minh Phu Bui, Yaser Hadadian, Khaled Mohamed Gadelmowla, Seungjun Oh, Chaemin Im, Seungyong Hahn, Jungwon Yoon\",\"doi\":\"10.1109/TMI.2024.3419427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ<sub>0</sub>, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ<sub>0</sub>. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ<sub>0</sub> within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm<sup>3</sup> at 2.5 T/m/μ<sub>0</sub> for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3419427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3419427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards human-scale magnetic particle imaging: development of the first system with superconductor-based selection coils.
Magnetic Particle Imaging (MPI) is an emerging tomographic modality that allows for precise three-dimensional (3D) mapping of magnetic nanoparticles (MNPs) concentration and distribution. Although significant progress has been made towards improving MPI since its introduction, scaling it up for human applications has proven challenging. High-quality images have been obtained in animal-scale MPI scanners with gradients up to 7 T/m/μ0, however, for MPI systems with bore diameters around 200 mm the gradients generated by electromagnets drop significantly to below 0.5 T/m/μ0. Given the current technological limitations in image reconstruction and the properties of available MNPs, these low gradients inherently impose limitations on improving MPI resolution for higher precision medical imaging. Utilizing superconductors stands out as a promising approach for developing a human-scale MPI system. In this study, we introduce, for the first time, a human-scale amplitude-modulated (AM) MPI system with superconductor-based selection coils. The system achieves an unprecedented magnetic field gradient of up to 2.5 T/m/μ0 within a 200 mm bore diameter, enabling large fields of view of 100 × 130 × 98 mm3 at 2.5 T/m/μ0 for 3D imaging. While obtained spatial resolution is in the order of previous animal-scale AM MPIs, incorporating superconductors for achieving such high gradients in a 200 mm bore diameter marks a major step toward clinical MPI.