Md. Sazzad Hossain , Md. Johirul Islam , Md. Rezaul Islam
{"title":"揭示 cEMG 与湿式 sEMG 的相关动态:调查影响因素。","authors":"Md. Sazzad Hossain , Md. Johirul Islam , Md. Rezaul Islam","doi":"10.1016/j.jelekin.2024.102912","DOIUrl":null,"url":null,"abstract":"<div><p>The electromyography (EMG) signal provides insight into neuromuscular activity which is used in medical and technological fields. Traditional needle electrodes and surface electrodes have several drawbacks making them less suitable for portable and long-term use. In contrast, emerging capacitive electrodes offer promising features over the existing electrodes. Yet, the full potential of capacitive electrodes remains untapped due to the lack of comprehensive design optimization for consistently reliable signal quality. This study highlights the complex interplay of factors influencing correlation in capacitive EMG (cEMG) and wet surface EMG (wet sEMG) signals. The study emphasizes the importance of the surface area of capacitive electrodes, muscle force, preprocessing, and sampling frequency in understanding and improving the correlation between cEMG and wet sEMG signals, providing valuable insights for future research and applications in the field. The study reveals that the electrode area has no significant effect on the correlation. However, the correlation significantly depends on the muscle force. In addition, removing artifacts from the cEMG signal increases the correlation, especially for lower force where artifacts are significant. Again, oversampling the EMG signal above 800 Hz does not have any impact on increasing the correlation but the correlation decreases with higher inter-electrode distance (IED). In this research, the highest correlation of 82.89% (normalized-91.62%) between cEMG and sEMG has been achieved for high muscle force with a plate area of 4 cm<sup>2</sup>. Therefore, the capacitive electrode can be an alternative for EMG signal acquisition.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"78 ","pages":"Article 102912"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling cEMG-wet sEMG Correlation Dynamics: Investigating Influential Factors\",\"authors\":\"Md. Sazzad Hossain , Md. Johirul Islam , Md. Rezaul Islam\",\"doi\":\"10.1016/j.jelekin.2024.102912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electromyography (EMG) signal provides insight into neuromuscular activity which is used in medical and technological fields. Traditional needle electrodes and surface electrodes have several drawbacks making them less suitable for portable and long-term use. In contrast, emerging capacitive electrodes offer promising features over the existing electrodes. Yet, the full potential of capacitive electrodes remains untapped due to the lack of comprehensive design optimization for consistently reliable signal quality. This study highlights the complex interplay of factors influencing correlation in capacitive EMG (cEMG) and wet surface EMG (wet sEMG) signals. The study emphasizes the importance of the surface area of capacitive electrodes, muscle force, preprocessing, and sampling frequency in understanding and improving the correlation between cEMG and wet sEMG signals, providing valuable insights for future research and applications in the field. The study reveals that the electrode area has no significant effect on the correlation. However, the correlation significantly depends on the muscle force. In addition, removing artifacts from the cEMG signal increases the correlation, especially for lower force where artifacts are significant. Again, oversampling the EMG signal above 800 Hz does not have any impact on increasing the correlation but the correlation decreases with higher inter-electrode distance (IED). In this research, the highest correlation of 82.89% (normalized-91.62%) between cEMG and sEMG has been achieved for high muscle force with a plate area of 4 cm<sup>2</sup>. Therefore, the capacitive electrode can be an alternative for EMG signal acquisition.</p></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"78 \",\"pages\":\"Article 102912\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641124000567\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000567","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The electromyography (EMG) signal provides insight into neuromuscular activity which is used in medical and technological fields. Traditional needle electrodes and surface electrodes have several drawbacks making them less suitable for portable and long-term use. In contrast, emerging capacitive electrodes offer promising features over the existing electrodes. Yet, the full potential of capacitive electrodes remains untapped due to the lack of comprehensive design optimization for consistently reliable signal quality. This study highlights the complex interplay of factors influencing correlation in capacitive EMG (cEMG) and wet surface EMG (wet sEMG) signals. The study emphasizes the importance of the surface area of capacitive electrodes, muscle force, preprocessing, and sampling frequency in understanding and improving the correlation between cEMG and wet sEMG signals, providing valuable insights for future research and applications in the field. The study reveals that the electrode area has no significant effect on the correlation. However, the correlation significantly depends on the muscle force. In addition, removing artifacts from the cEMG signal increases the correlation, especially for lower force where artifacts are significant. Again, oversampling the EMG signal above 800 Hz does not have any impact on increasing the correlation but the correlation decreases with higher inter-electrode distance (IED). In this research, the highest correlation of 82.89% (normalized-91.62%) between cEMG and sEMG has been achieved for high muscle force with a plate area of 4 cm2. Therefore, the capacitive electrode can be an alternative for EMG signal acquisition.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.