Johannes Kähkölä, Teija Puhto, Jani Katisko, Maija Lahtinen
{"title":"基于 26 年单中心经验的脑深部刺激感染预防和管理建议。","authors":"Johannes Kähkölä, Teija Puhto, Jani Katisko, Maija Lahtinen","doi":"10.1159/000539188","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Infections related to deep brain stimulation (DBS) can lead to discontinuation of the treatment and increased morbidity. Various measures of reducing infection rates have been proposed in the literature, but scientific consensus is lacking. The aim of this study was to report a 26-year single center experience of DBS infections and provide recommendations for the prevention and management of them.</p><p><strong>Methods: </strong>The retrospective analysis consisted of 978 DBS surgeries performed at Oulu University Hospital (OUH) from 1997 to 2022. This included 342 primary or reimplantations of DBS electrodes and 559 primary or reimplantations of implantable pulse generator (IPG). Infections within approximately 1 year after the surgery without secondary cause were considered surgical-site infections (SSIs). χ2 test was used to compare infection rates before and after 2013, when the systematic implementation of infection prevention measures was started.</p><p><strong>Results: </strong>A total of 35 DBS implants were found to be infected. The number of SSIs was 30, of which 29 were originally operated in OUH leading to a center-specific infection rate of 3.1%. Of the SSIs, 17.2% occurred after IPG replacement. Staphylococcus aureus was found in 75.0% of cultures and 32.1% were mixed infections. The treatment of SSIs included aggressive surgical revision combined with cefuroxime and vancomycin antibiotics, as most patients in the initial conservative treatment group eventually required surgical revision. A statistically significant difference in infection rates before and after the implementation of preventative measures was not observed (risk ratio 2.20, 95% confidence interval 0.94-5.75, p = 0.051), despite over two-fold difference in the incidence of SSIs.</p><p><strong>Conclusion: </strong>Our findings show that the rates of surgical infections are low in modern DBS, but due to their serious consequences, preventative measures should be implemented. We highlight that mixed infections should be accounted for in the antibiotic selection. Furthermore, our treatment recommendation includes aggressive surgical revision combined with antibiotic treatment.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"240-247"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendations for the Prevention and Management of Deep Brain Stimulation Infections Based on 26-Year Single-Center Experience.\",\"authors\":\"Johannes Kähkölä, Teija Puhto, Jani Katisko, Maija Lahtinen\",\"doi\":\"10.1159/000539188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Infections related to deep brain stimulation (DBS) can lead to discontinuation of the treatment and increased morbidity. Various measures of reducing infection rates have been proposed in the literature, but scientific consensus is lacking. The aim of this study was to report a 26-year single center experience of DBS infections and provide recommendations for the prevention and management of them.</p><p><strong>Methods: </strong>The retrospective analysis consisted of 978 DBS surgeries performed at Oulu University Hospital (OUH) from 1997 to 2022. This included 342 primary or reimplantations of DBS electrodes and 559 primary or reimplantations of implantable pulse generator (IPG). Infections within approximately 1 year after the surgery without secondary cause were considered surgical-site infections (SSIs). χ2 test was used to compare infection rates before and after 2013, when the systematic implementation of infection prevention measures was started.</p><p><strong>Results: </strong>A total of 35 DBS implants were found to be infected. The number of SSIs was 30, of which 29 were originally operated in OUH leading to a center-specific infection rate of 3.1%. Of the SSIs, 17.2% occurred after IPG replacement. Staphylococcus aureus was found in 75.0% of cultures and 32.1% were mixed infections. The treatment of SSIs included aggressive surgical revision combined with cefuroxime and vancomycin antibiotics, as most patients in the initial conservative treatment group eventually required surgical revision. A statistically significant difference in infection rates before and after the implementation of preventative measures was not observed (risk ratio 2.20, 95% confidence interval 0.94-5.75, p = 0.051), despite over two-fold difference in the incidence of SSIs.</p><p><strong>Conclusion: </strong>Our findings show that the rates of surgical infections are low in modern DBS, but due to their serious consequences, preventative measures should be implemented. We highlight that mixed infections should be accounted for in the antibiotic selection. Furthermore, our treatment recommendation includes aggressive surgical revision combined with antibiotic treatment.</p>\",\"PeriodicalId\":22078,\"journal\":{\"name\":\"Stereotactic and Functional Neurosurgery\",\"volume\":\" \",\"pages\":\"240-247\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stereotactic and Functional Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000539188\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Recommendations for the Prevention and Management of Deep Brain Stimulation Infections Based on 26-Year Single-Center Experience.
Introduction: Infections related to deep brain stimulation (DBS) can lead to discontinuation of the treatment and increased morbidity. Various measures of reducing infection rates have been proposed in the literature, but scientific consensus is lacking. The aim of this study was to report a 26-year single center experience of DBS infections and provide recommendations for the prevention and management of them.
Methods: The retrospective analysis consisted of 978 DBS surgeries performed at Oulu University Hospital (OUH) from 1997 to 2022. This included 342 primary or reimplantations of DBS electrodes and 559 primary or reimplantations of implantable pulse generator (IPG). Infections within approximately 1 year after the surgery without secondary cause were considered surgical-site infections (SSIs). χ2 test was used to compare infection rates before and after 2013, when the systematic implementation of infection prevention measures was started.
Results: A total of 35 DBS implants were found to be infected. The number of SSIs was 30, of which 29 were originally operated in OUH leading to a center-specific infection rate of 3.1%. Of the SSIs, 17.2% occurred after IPG replacement. Staphylococcus aureus was found in 75.0% of cultures and 32.1% were mixed infections. The treatment of SSIs included aggressive surgical revision combined with cefuroxime and vancomycin antibiotics, as most patients in the initial conservative treatment group eventually required surgical revision. A statistically significant difference in infection rates before and after the implementation of preventative measures was not observed (risk ratio 2.20, 95% confidence interval 0.94-5.75, p = 0.051), despite over two-fold difference in the incidence of SSIs.
Conclusion: Our findings show that the rates of surgical infections are low in modern DBS, but due to their serious consequences, preventative measures should be implemented. We highlight that mixed infections should be accounted for in the antibiotic selection. Furthermore, our treatment recommendation includes aggressive surgical revision combined with antibiotic treatment.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.