{"title":"CRISPR 缺失 miR-27 影响 CHO 细胞重组蛋白的生产。","authors":"Kevin Kellner, Nga T Lao, Niall Barron","doi":"10.1007/978-1-0716-3878-1_18","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR Deletion of miR-27 Impacts Recombinant Protein Production in CHO Cells.\",\"authors\":\"Kevin Kellner, Nga T Lao, Niall Barron\",\"doi\":\"10.1007/978-1-0716-3878-1_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3878-1_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3878-1_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
微小核糖核酸(microRNA)是一组有趣的调控分子,其独特之处在于单个 miRNA 能够调控数百个目标基因的表达。在这方面,它们已被证明是改善重组蛋白生物制造过程中重要的细胞表型的一种策略。稳定删除 miRNA 的常用方法是使用海绵诱饵转录本或 shRNA 抑制剂,这两种方法都需要在细胞中引入和表达额外的遗传物质。作为一种替代方法,我们在实验室中实施了 CRISPR/Cas9 系统,生成缺乏特定 miRNA 表达的 CHO 细胞,用于功能研究。我们选择了 miR-27a/b 来实施该系统,因为它已被证明在低温条件下会上调,因此可能参与影响 CHO 细胞的生长和重组蛋白的生产率。在本章中,我们以 miR-27 为例,介绍了一种利用 CRISPR/Cas9 在 CHO 细胞中靶向 miRNA 的方案,并分析了由此产生的表型。我们展示了在 CHO 细胞中靶向 miRNA 的可能性,并实现了≥80% 的靶向效率。印迹分析和 TOPO-TA 克隆结合 Sanger 测序显示了一系列不同的印迹。此外,还能鉴定出无法检测到成熟 miR-27b 表达的克隆。miR-27b的消耗提高了批次培养和喂养批次培养后期的存活率,使其成为改善CHO细胞生物工艺性能的潜在目标。
CRISPR Deletion of miR-27 Impacts Recombinant Protein Production in CHO Cells.
MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.