{"title":"通过受体结合配体分析和分子动力学研究揭示多塞平 E/Z 异构体与组胺 H1 受体的结合特性","authors":"Hiroto Kaneko, Ryunosuke Korenaga, Ryota Nakamura, Shinnosuke Kawai, Tadashi Ando, Mitsunori Shiroishi","doi":"10.1002/jmr.3098","DOIUrl":null,"url":null,"abstract":"<p>Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H<sub>1</sub> receptor (H<sub>1</sub>R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H<sub>1</sub>R/doxepin complex, the hydroxyl group of Thr112<sup>3.37</sup> is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H<sub>1</sub>R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H<sub>1</sub>R was 55:45, indicating that the Z-isomer was bound to WT H<sub>1</sub>R with an approximately 5.2-fold higher affinity than the E-isomer. For the T112<sup>3.37</sup>V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T112<sup>3.37</sup>V. Furthermore, MD simulations revealed that the hydroxyl group of T112<sup>3.37</sup> did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T112<sup>3.37</sup> contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"37 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3098","citationCount":"0","resultStr":"{\"title\":\"Binding characteristics of the doxepin E/Z-isomers to the histamine H1 receptor revealed by receptor-bound ligand analysis and molecular dynamics study\",\"authors\":\"Hiroto Kaneko, Ryunosuke Korenaga, Ryota Nakamura, Shinnosuke Kawai, Tadashi Ando, Mitsunori Shiroishi\",\"doi\":\"10.1002/jmr.3098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H<sub>1</sub> receptor (H<sub>1</sub>R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H<sub>1</sub>R/doxepin complex, the hydroxyl group of Thr112<sup>3.37</sup> is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H<sub>1</sub>R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H<sub>1</sub>R was 55:45, indicating that the Z-isomer was bound to WT H<sub>1</sub>R with an approximately 5.2-fold higher affinity than the E-isomer. For the T112<sup>3.37</sup>V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T112<sup>3.37</sup>V. Furthermore, MD simulations revealed that the hydroxyl group of T112<sup>3.37</sup> did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T112<sup>3.37</sup> contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":\"37 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3098\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
多塞平是一种抗组胺药和三环类抗抑郁药,能以高亲和力与组胺 H1 受体(H1R)结合。多塞平是一种 85:15 的 E- 和 Z- 异构体混合物。众所周知,Z-异构体比 E-异构体更有效,而根据 H1R/多塞平复合物的晶体结构,Thr1123.37 的羟基与 E-异构体的氧原子很接近,足以形成氢键。详细的结合特征和造成差异的原因仍不清楚。在本研究中,我们分析了从与多塞平复合的纯化 H1R 蛋白中提取后与受体结合的多塞平异构体。与野生型(WT)H1R 结合的 E 异构体和 Z 异构体的比例为 55:45,表明 Z 异构体与 WT H1R 结合的亲和力比 E 异构体高出约 5.2 倍。对于 T1123.37V 突变体,E/Z 比率为 89:11,表明两种异构体具有相似的亲和力。利用分子动力学(MD)模拟进行的自由能计算也再现了 WT 和 T1123.37V 异构体之间相对结合自由能差异的实验结果。此外,MD 模拟显示,T1123.37 的羟基并不与 E 异构体形成氢键,而是与结合口袋中的相邻残基形成氢键。对受体结合的多塞平和 MD 模拟的分析表明,T1123.37 的羟基有助于在结合袋中形成一种化学环境,这种环境对没有与多塞平形成氢键的 Z 异构体略为有利。
Binding characteristics of the doxepin E/Z-isomers to the histamine H1 receptor revealed by receptor-bound ligand analysis and molecular dynamics study
Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.