{"title":"NPI-DCGNN:利用双通道图神经网络识别 ncRNA 与蛋白质相互作用的精确工具","authors":"Xin Zhang, Liangwei Zhao, Ziyi Chai, Hao Wu, Wei Yang, Chen Li, Yu Jiang, Quanzhong Liu","doi":"10.1089/cmb.2023.0449","DOIUrl":null,"url":null,"abstract":"<p><p>Noncoding RNA (NcRNA)-protein interactions (NPIs) play fundamentally important roles in carrying out cellular activities. Although various predictors based on molecular features and graphs have been published to boost the identification of NPIs, most of them often ignore the information between known NPIs or exhibit insufficient learning ability from graphs, posing a significant challenge in effectively identifying NPIs. To develop a more reliable and accurate predictor for NPIs, in this article, we propose NPI-DCGNN, an end-to-end NPI predictor based on a dual-channel graph neural network (DCGNN). NPI-DCGNN initially treats the known NPIs as an ncRNA-protein bipartite graph. Subsequently, for each ncRNA-protein pair, NPI-DCGNN extracts two local subgraphs centered around the ncRNA and protein, respectively, from the bipartite graph. After that, it utilizes a dual-channel graph representation learning layer based on GNN to generate high-level feature representations for the ncRNA-protein pair. Finally, it employs a fully connected network and output layer to predict whether an interaction exists between the pair of ncRNA and protein. Experimental results on four experimentally validated datasets demonstrate that NPI-DCGNN outperforms several state-of-the-art NPI predictors. Our case studies on the NPInter database further demonstrate the prediction power of NPI-DCGNN in predicting NPIs. With the availability of the source codes (https://github.com/zhangxin11111/NPI-DCGNN), we anticipate that NPI-DCGNN could facilitate the studies of ncRNA interactome by providing highly reliable NPI candidates for further experimental validation.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"742-756"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network.\",\"authors\":\"Xin Zhang, Liangwei Zhao, Ziyi Chai, Hao Wu, Wei Yang, Chen Li, Yu Jiang, Quanzhong Liu\",\"doi\":\"10.1089/cmb.2023.0449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noncoding RNA (NcRNA)-protein interactions (NPIs) play fundamentally important roles in carrying out cellular activities. Although various predictors based on molecular features and graphs have been published to boost the identification of NPIs, most of them often ignore the information between known NPIs or exhibit insufficient learning ability from graphs, posing a significant challenge in effectively identifying NPIs. To develop a more reliable and accurate predictor for NPIs, in this article, we propose NPI-DCGNN, an end-to-end NPI predictor based on a dual-channel graph neural network (DCGNN). NPI-DCGNN initially treats the known NPIs as an ncRNA-protein bipartite graph. Subsequently, for each ncRNA-protein pair, NPI-DCGNN extracts two local subgraphs centered around the ncRNA and protein, respectively, from the bipartite graph. After that, it utilizes a dual-channel graph representation learning layer based on GNN to generate high-level feature representations for the ncRNA-protein pair. Finally, it employs a fully connected network and output layer to predict whether an interaction exists between the pair of ncRNA and protein. Experimental results on four experimentally validated datasets demonstrate that NPI-DCGNN outperforms several state-of-the-art NPI predictors. Our case studies on the NPInter database further demonstrate the prediction power of NPI-DCGNN in predicting NPIs. With the availability of the source codes (https://github.com/zhangxin11111/NPI-DCGNN), we anticipate that NPI-DCGNN could facilitate the studies of ncRNA interactome by providing highly reliable NPI candidates for further experimental validation.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"742-756\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0449\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0449","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network.
Noncoding RNA (NcRNA)-protein interactions (NPIs) play fundamentally important roles in carrying out cellular activities. Although various predictors based on molecular features and graphs have been published to boost the identification of NPIs, most of them often ignore the information between known NPIs or exhibit insufficient learning ability from graphs, posing a significant challenge in effectively identifying NPIs. To develop a more reliable and accurate predictor for NPIs, in this article, we propose NPI-DCGNN, an end-to-end NPI predictor based on a dual-channel graph neural network (DCGNN). NPI-DCGNN initially treats the known NPIs as an ncRNA-protein bipartite graph. Subsequently, for each ncRNA-protein pair, NPI-DCGNN extracts two local subgraphs centered around the ncRNA and protein, respectively, from the bipartite graph. After that, it utilizes a dual-channel graph representation learning layer based on GNN to generate high-level feature representations for the ncRNA-protein pair. Finally, it employs a fully connected network and output layer to predict whether an interaction exists between the pair of ncRNA and protein. Experimental results on four experimentally validated datasets demonstrate that NPI-DCGNN outperforms several state-of-the-art NPI predictors. Our case studies on the NPInter database further demonstrate the prediction power of NPI-DCGNN in predicting NPIs. With the availability of the source codes (https://github.com/zhangxin11111/NPI-DCGNN), we anticipate that NPI-DCGNN could facilitate the studies of ncRNA interactome by providing highly reliable NPI candidates for further experimental validation.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases