利用嗜热细菌 Caldimonas thermodepolymerans 将阿魏酸生物转化为香草醇和香草酸。

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vendula Hrabalová , Tomáš Opial , Jana Musilová , Karel Sedlář , Stanislav Obruča
{"title":"利用嗜热细菌 Caldimonas thermodepolymerans 将阿魏酸生物转化为香草醇和香草酸。","authors":"Vendula Hrabalová ,&nbsp;Tomáš Opial ,&nbsp;Jana Musilová ,&nbsp;Karel Sedlář ,&nbsp;Stanislav Obruča","doi":"10.1016/j.enzmictec.2024.110475","DOIUrl":null,"url":null,"abstract":"<div><p><em>Caldimonas thermodepolymerans</em>, a Gram-negative, moderately thermophilic bacterium, exhibits a remarkable biotechnological potential. Given the presence of genes in its genome dedicated to the metabolization of ferulic acid (FA), this study aimed to explore the bacterium's capability for biotransforming FA into high-value metabolites. The results unequivocally demonstrate the bacterium's proficiency in the efficient and rapid conversion of FA into vanillyl alcohol (VOH) and vanillic acid (VA). By manipulating key cultivation parameters, such as adjusting initial FA doses and varying cultivation periods, the product profile can be tailored. Higher initial doses and shorter cultivation periods favor the production of VOH, while lower FA doses and extended cultivation periods lead to the predominant formation of VA. Furthermore, the process can be operated in a repeated-batch scenario. This underscores the potential of <em>C. thermodepolymerans</em> for industrial biotransformation of FA, presenting a promising avenue for leveraging its capabilities in practical applications.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"179 ","pages":"Article 110475"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotransformation of ferulic acid into vanillyl alcohol and vanillic acid employing thermophilic bacterium Caldimonas thermodepolymerans\",\"authors\":\"Vendula Hrabalová ,&nbsp;Tomáš Opial ,&nbsp;Jana Musilová ,&nbsp;Karel Sedlář ,&nbsp;Stanislav Obruča\",\"doi\":\"10.1016/j.enzmictec.2024.110475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Caldimonas thermodepolymerans</em>, a Gram-negative, moderately thermophilic bacterium, exhibits a remarkable biotechnological potential. Given the presence of genes in its genome dedicated to the metabolization of ferulic acid (FA), this study aimed to explore the bacterium's capability for biotransforming FA into high-value metabolites. The results unequivocally demonstrate the bacterium's proficiency in the efficient and rapid conversion of FA into vanillyl alcohol (VOH) and vanillic acid (VA). By manipulating key cultivation parameters, such as adjusting initial FA doses and varying cultivation periods, the product profile can be tailored. Higher initial doses and shorter cultivation periods favor the production of VOH, while lower FA doses and extended cultivation periods lead to the predominant formation of VA. Furthermore, the process can be operated in a repeated-batch scenario. This underscores the potential of <em>C. thermodepolymerans</em> for industrial biotransformation of FA, presenting a promising avenue for leveraging its capabilities in practical applications.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"179 \",\"pages\":\"Article 110475\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000826\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000826","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Caldimonas thermodepolymerans 是一种革兰氏阴性中度嗜热细菌,具有显著的生物技术潜力。鉴于其基因组中存在专门代谢阿魏酸(FA)的基因,本研究旨在探索该细菌将阿魏酸生物转化为高价值代谢物的能力。研究结果明确证明,该细菌能够高效、快速地将阿魏酸转化为香草醇(VOH)和香草酸(VA)。通过调节关键的培养参数,如调整初始 FA 剂量和不同的培养期,可以定制产品特性。较高的初始剂量和较短的培养期有利于 VOH 的生成,而较低的 FA 剂量和较长的培养期则主要生成 VA。此外,该工艺还可以在重复批次的情况下运行。这凸显了热解聚合菌在 FA 工业生物转化方面的潜力,为在实际应用中利用其能力提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biotransformation of ferulic acid into vanillyl alcohol and vanillic acid employing thermophilic bacterium Caldimonas thermodepolymerans

Biotransformation of ferulic acid into vanillyl alcohol and vanillic acid employing thermophilic bacterium Caldimonas thermodepolymerans

Caldimonas thermodepolymerans, a Gram-negative, moderately thermophilic bacterium, exhibits a remarkable biotechnological potential. Given the presence of genes in its genome dedicated to the metabolization of ferulic acid (FA), this study aimed to explore the bacterium's capability for biotransforming FA into high-value metabolites. The results unequivocally demonstrate the bacterium's proficiency in the efficient and rapid conversion of FA into vanillyl alcohol (VOH) and vanillic acid (VA). By manipulating key cultivation parameters, such as adjusting initial FA doses and varying cultivation periods, the product profile can be tailored. Higher initial doses and shorter cultivation periods favor the production of VOH, while lower FA doses and extended cultivation periods lead to the predominant formation of VA. Furthermore, the process can be operated in a repeated-batch scenario. This underscores the potential of C. thermodepolymerans for industrial biotransformation of FA, presenting a promising avenue for leveraging its capabilities in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信