Cato A. R. Pappijn, Ruben Van de Vijver, Maarten K. Sabbe, Marie-Françoise Reyniers, Guy B. Marin and Kevin M. Van Geem
{"title":"通过基团相加性建立含氮化合物中氢抽取反应动力学模型。","authors":"Cato A. R. Pappijn, Ruben Van de Vijver, Maarten K. Sabbe, Marie-Françoise Reyniers, Guy B. Marin and Kevin M. Van Geem","doi":"10.1039/D4CP00726C","DOIUrl":null,"url":null,"abstract":"<p >New group additivity values are presented to enable the modeling of a broad range of intermolecular hydrogen abstraction reactions involving nitrogen-containing compounds. From a dataset of 316 reaction rate coefficients calculated at the CBS-QB3 level of theory in the high-pressure limit, 76 group additivity values and 14 resonance corrections have been estimated. The influence of substituents on both the attacked hydrogen and attacking radical, being a carbon or nitrogen atom, has been investigated systematically. The new group additivity models can be applied to approximate the Arrhenius parameters of hydrogen abstraction reactions of nitrogen-containing compounds by hydrogen atoms, carbon-centered and nitrogen-centered radicals in the 300–1800 K temperature range. Complementary to the group additivity model, correlations for the tunneling coefficients, which depend on both the temperature and the activation energy of the reaction in the exothermic direction, have been generated. The good performance of the new group additivity schemes has been demonstrated using a test set of reactions. At 1000 K, the rate coefficients for all test set reactions are approximated on average within a factor of 1.45, 1.47 and 1.34, for the hydrogen abstractions with a reactive center of the type H–H–N, N–H–N and C–H–N respectively.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the kinetics of hydrogen abstraction reactions in nitrogen-containing compounds via group additivity†\",\"authors\":\"Cato A. R. Pappijn, Ruben Van de Vijver, Maarten K. Sabbe, Marie-Françoise Reyniers, Guy B. Marin and Kevin M. Van Geem\",\"doi\":\"10.1039/D4CP00726C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >New group additivity values are presented to enable the modeling of a broad range of intermolecular hydrogen abstraction reactions involving nitrogen-containing compounds. From a dataset of 316 reaction rate coefficients calculated at the CBS-QB3 level of theory in the high-pressure limit, 76 group additivity values and 14 resonance corrections have been estimated. The influence of substituents on both the attacked hydrogen and attacking radical, being a carbon or nitrogen atom, has been investigated systematically. The new group additivity models can be applied to approximate the Arrhenius parameters of hydrogen abstraction reactions of nitrogen-containing compounds by hydrogen atoms, carbon-centered and nitrogen-centered radicals in the 300–1800 K temperature range. Complementary to the group additivity model, correlations for the tunneling coefficients, which depend on both the temperature and the activation energy of the reaction in the exothermic direction, have been generated. The good performance of the new group additivity schemes has been demonstrated using a test set of reactions. At 1000 K, the rate coefficients for all test set reactions are approximated on average within a factor of 1.45, 1.47 and 1.34, for the hydrogen abstractions with a reactive center of the type H–H–N, N–H–N and C–H–N respectively.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp00726c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp00726c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modeling the kinetics of hydrogen abstraction reactions in nitrogen-containing compounds via group additivity†
New group additivity values are presented to enable the modeling of a broad range of intermolecular hydrogen abstraction reactions involving nitrogen-containing compounds. From a dataset of 316 reaction rate coefficients calculated at the CBS-QB3 level of theory in the high-pressure limit, 76 group additivity values and 14 resonance corrections have been estimated. The influence of substituents on both the attacked hydrogen and attacking radical, being a carbon or nitrogen atom, has been investigated systematically. The new group additivity models can be applied to approximate the Arrhenius parameters of hydrogen abstraction reactions of nitrogen-containing compounds by hydrogen atoms, carbon-centered and nitrogen-centered radicals in the 300–1800 K temperature range. Complementary to the group additivity model, correlations for the tunneling coefficients, which depend on both the temperature and the activation energy of the reaction in the exothermic direction, have been generated. The good performance of the new group additivity schemes has been demonstrated using a test set of reactions. At 1000 K, the rate coefficients for all test set reactions are approximated on average within a factor of 1.45, 1.47 and 1.34, for the hydrogen abstractions with a reactive center of the type H–H–N, N–H–N and C–H–N respectively.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.