Tarek Hazwani, Heba Hamam, Angela Caswell, Azza Madkhaly, Saif Al Saif, Zahra Al Hassan, Reem Al Sweilem, Asma Arabi
{"title":"积极主动的患者安全:通过基于模拟的临床系统测试和医疗失效模式及影响分析,加强医院的准备工作。","authors":"Tarek Hazwani, Heba Hamam, Angela Caswell, Azza Madkhaly, Saif Al Saif, Zahra Al Hassan, Reem Al Sweilem, Asma Arabi","doi":"10.1186/s41077-024-00298-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recognizing and identifying latent safety threats (LSTs) before patient care commences is crucial, aiding leaders in ensuring hospital readiness and extending its impact beyond patient safety alone. This study evaluated the effectiveness of a combination of Simulation-based Clinical Systems Testing (SbCST) with Healthcare Failure Mode and Effect Analysis (HFMEA) with regard to mitigating LSTs within a newly constructed hospital.</p><p><strong>Methods: </strong>Three phases of the combined SbCST and HFMEA approach were implemented across all hospital settings. The scenarios tested system functionalities, team responses, and resource availability. The threats thus identified were categorized into system-related issues, human issues, and resource issues, after which they were prioritized and addressed using mitigation strategies. Reassessment confirmed the effectiveness of these strategies before hospital commissioning.</p><p><strong>Results: </strong>More than 76% of the LSTs were mitigated through the combined approach. System-related issues, such as nonfunctional communication devices and faulty elevators, were addressed by leadership. Human issues such as miscommunication and nonadherence to hospital policy led to improvements in interprofessional communication and teamwork. Resource issues, including missing equipment and risks of oxygen explosion, were addressed through procurement, maintenance, and staff training for equipment preparation.</p><p><strong>Conclusion: </strong>The SbCST and HFMEA were highly effective with regard to proactively identifying and mitigating LSTs across all aspects of hospital preparedness. This systematic and comprehensive approach offers a valuable tool for enhancing patient safety in new healthcare facilities, thereby potentially setting a new standard for proactive hazard identification and risk management in the context of healthcare construction and commissioning.</p>","PeriodicalId":72108,"journal":{"name":"Advances in simulation (London, England)","volume":"9 1","pages":"26"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202391/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proactive patient safety: enhancing hospital readiness through simulation-based clinical systems testing and healthcare failure mode and effect analysis.\",\"authors\":\"Tarek Hazwani, Heba Hamam, Angela Caswell, Azza Madkhaly, Saif Al Saif, Zahra Al Hassan, Reem Al Sweilem, Asma Arabi\",\"doi\":\"10.1186/s41077-024-00298-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recognizing and identifying latent safety threats (LSTs) before patient care commences is crucial, aiding leaders in ensuring hospital readiness and extending its impact beyond patient safety alone. This study evaluated the effectiveness of a combination of Simulation-based Clinical Systems Testing (SbCST) with Healthcare Failure Mode and Effect Analysis (HFMEA) with regard to mitigating LSTs within a newly constructed hospital.</p><p><strong>Methods: </strong>Three phases of the combined SbCST and HFMEA approach were implemented across all hospital settings. The scenarios tested system functionalities, team responses, and resource availability. The threats thus identified were categorized into system-related issues, human issues, and resource issues, after which they were prioritized and addressed using mitigation strategies. Reassessment confirmed the effectiveness of these strategies before hospital commissioning.</p><p><strong>Results: </strong>More than 76% of the LSTs were mitigated through the combined approach. System-related issues, such as nonfunctional communication devices and faulty elevators, were addressed by leadership. Human issues such as miscommunication and nonadherence to hospital policy led to improvements in interprofessional communication and teamwork. Resource issues, including missing equipment and risks of oxygen explosion, were addressed through procurement, maintenance, and staff training for equipment preparation.</p><p><strong>Conclusion: </strong>The SbCST and HFMEA were highly effective with regard to proactively identifying and mitigating LSTs across all aspects of hospital preparedness. This systematic and comprehensive approach offers a valuable tool for enhancing patient safety in new healthcare facilities, thereby potentially setting a new standard for proactive hazard identification and risk management in the context of healthcare construction and commissioning.</p>\",\"PeriodicalId\":72108,\"journal\":{\"name\":\"Advances in simulation (London, England)\",\"volume\":\"9 1\",\"pages\":\"26\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in simulation (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41077-024-00298-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in simulation (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41077-024-00298-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Proactive patient safety: enhancing hospital readiness through simulation-based clinical systems testing and healthcare failure mode and effect analysis.
Background: Recognizing and identifying latent safety threats (LSTs) before patient care commences is crucial, aiding leaders in ensuring hospital readiness and extending its impact beyond patient safety alone. This study evaluated the effectiveness of a combination of Simulation-based Clinical Systems Testing (SbCST) with Healthcare Failure Mode and Effect Analysis (HFMEA) with regard to mitigating LSTs within a newly constructed hospital.
Methods: Three phases of the combined SbCST and HFMEA approach were implemented across all hospital settings. The scenarios tested system functionalities, team responses, and resource availability. The threats thus identified were categorized into system-related issues, human issues, and resource issues, after which they were prioritized and addressed using mitigation strategies. Reassessment confirmed the effectiveness of these strategies before hospital commissioning.
Results: More than 76% of the LSTs were mitigated through the combined approach. System-related issues, such as nonfunctional communication devices and faulty elevators, were addressed by leadership. Human issues such as miscommunication and nonadherence to hospital policy led to improvements in interprofessional communication and teamwork. Resource issues, including missing equipment and risks of oxygen explosion, were addressed through procurement, maintenance, and staff training for equipment preparation.
Conclusion: The SbCST and HFMEA were highly effective with regard to proactively identifying and mitigating LSTs across all aspects of hospital preparedness. This systematic and comprehensive approach offers a valuable tool for enhancing patient safety in new healthcare facilities, thereby potentially setting a new standard for proactive hazard identification and risk management in the context of healthcare construction and commissioning.