{"title":"为计算机辅助细胞学诊断去除背景杂质。","authors":"Keita Takeda, Tomoya Sakai, Eiji Mitate","doi":"10.1007/s11548-024-03169-0","DOIUrl":null,"url":null,"abstract":"<p><p>To address the background-bias problem in computer-aided cytology caused by microscopic slide deterioration, this article proposes a deep learning approach for cell segmentation and background removal without requiring cell annotation. A U-Net-based model was trained to separate cells from the background in an unsupervised manner by leveraging the redundancy of the background and the sparsity of cells in liquid-based cytology (LBC) images. The experimental results demonstrate that the U-Net-based model trained on a small set of cytology images can exclude background features and accurately segment cells. This capability is beneficial for debiasing in the detection and classification of the cells of interest in oral LBC. Slide deterioration can significantly affect deep learning-based cell classification. Our proposed method effectively removes background features at no cost of cell annotation, thereby enabling accurate cytological diagnosis through the deep learning of microscopic slide images.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"2165-2174"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541310/pdf/","citationCount":"0","resultStr":"{\"title\":\"Background removal for debiasing computer-aided cytological diagnosis.\",\"authors\":\"Keita Takeda, Tomoya Sakai, Eiji Mitate\",\"doi\":\"10.1007/s11548-024-03169-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the background-bias problem in computer-aided cytology caused by microscopic slide deterioration, this article proposes a deep learning approach for cell segmentation and background removal without requiring cell annotation. A U-Net-based model was trained to separate cells from the background in an unsupervised manner by leveraging the redundancy of the background and the sparsity of cells in liquid-based cytology (LBC) images. The experimental results demonstrate that the U-Net-based model trained on a small set of cytology images can exclude background features and accurately segment cells. This capability is beneficial for debiasing in the detection and classification of the cells of interest in oral LBC. Slide deterioration can significantly affect deep learning-based cell classification. Our proposed method effectively removes background features at no cost of cell annotation, thereby enabling accurate cytological diagnosis through the deep learning of microscopic slide images.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"2165-2174\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03169-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03169-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Background removal for debiasing computer-aided cytological diagnosis.
To address the background-bias problem in computer-aided cytology caused by microscopic slide deterioration, this article proposes a deep learning approach for cell segmentation and background removal without requiring cell annotation. A U-Net-based model was trained to separate cells from the background in an unsupervised manner by leveraging the redundancy of the background and the sparsity of cells in liquid-based cytology (LBC) images. The experimental results demonstrate that the U-Net-based model trained on a small set of cytology images can exclude background features and accurately segment cells. This capability is beneficial for debiasing in the detection and classification of the cells of interest in oral LBC. Slide deterioration can significantly affect deep learning-based cell classification. Our proposed method effectively removes background features at no cost of cell annotation, thereby enabling accurate cytological diagnosis through the deep learning of microscopic slide images.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.