利用氢交换质谱法和硅学建模阐明糖尿病-白细胞介素融合蛋白的可逆自结合界面

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-09-02 Epub Date: 2024-06-26 DOI:10.1021/acs.molpharmaceut.4c00169
Martin Eisinger, Harri Rahn, Yong Chen, Melissa Fernandes, Zhiyi Lin, Nikolai Hentze, Davide Tavella, Ehab M Moussa
{"title":"利用氢交换质谱法和硅学建模阐明糖尿病-白细胞介素融合蛋白的可逆自结合界面","authors":"Martin Eisinger, Harri Rahn, Yong Chen, Melissa Fernandes, Zhiyi Lin, Nikolai Hentze, Davide Tavella, Ehab M Moussa","doi":"10.1021/acs.molpharmaceut.4c00169","DOIUrl":null,"url":null,"abstract":"<p><p>Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling.\",\"authors\":\"Martin Eisinger, Harri Rahn, Yong Chen, Melissa Fernandes, Zhiyi Lin, Nikolai Hentze, Davide Tavella, Ehab M Moussa\",\"doi\":\"10.1021/acs.molpharmaceut.4c00169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00169\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00169","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

治疗蛋白质的可逆性自结合(RSA)给高浓度制剂的开发带来了重大挑战,尤其是那些用于皮下注射的制剂。因此,了解自结合机制对于设计和选择具有可接受性的候选药物进入临床试验至关重要。将实验与硅学建模相结合是阐明自结合界面的有力工具。在不同溶液条件下对单克隆抗体的 RSA 进行了广泛研究,结果表明抗原结合片段和可结晶片段之间都存在相互作用。双特异性抗体、抗原结合片段、单链可变片段和二抗体等新模式构成了一类快速增长的抗体疗法,它们与单克隆抗体相比具有独特的理化性质。本研究利用氢氘交换结合质谱(HDX-MS)技术,结合硅学建模,研究了二抗体-白细胞介素 22 融合蛋白(FP-1)的 RSA 界面。总之,研究结果表明,FP-1 的自结合具有复杂的溶液行为,其界面可归因于二抗体可变轻链中的一个特定片段。这些发现还表明,HDX-MS 与硅学建模的结合是指导新型生物治疗方法的设计和候选药物选择的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling.

Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling.

Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信