非线性二阶初值问题的 hp 版本 C1 连续 Petrov-Galerkin 方法在波方程中的应用

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Lina Wang, Mingzhu Zhang, Hongjiong Tian, Lijun Yi
{"title":"非线性二阶初值问题的 hp 版本 C1 连续 Petrov-Galerkin 方法在波方程中的应用","authors":"Lina Wang, Mingzhu Zhang, Hongjiong Tian, Lijun Yi","doi":"10.1093/imanum/drae036","DOIUrl":null,"url":null,"abstract":"We introduce and analyze an $hp$-version $C^{1}$-continuous Petrov–Galerkin (CPG) method for nonlinear initial value problems of second-order ordinary differential equations. We derive a-priori error estimates in the $L^{2}$-, $L^{\\infty }$-, $H^{1}$- and $H^{2}$-norms that are completely explicit in the local time steps and local approximation degrees. Moreover, we show that the $hp$-version $C^{1}$-CPG method superconverges at the nodal points of the time partition with regard to the time steps and approximation degrees. As an application, we apply the $hp$-version $C^{1}$-CPG method to time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations\",\"authors\":\"Lina Wang, Mingzhu Zhang, Hongjiong Tian, Lijun Yi\",\"doi\":\"10.1093/imanum/drae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and analyze an $hp$-version $C^{1}$-continuous Petrov–Galerkin (CPG) method for nonlinear initial value problems of second-order ordinary differential equations. We derive a-priori error estimates in the $L^{2}$-, $L^{\\\\infty }$-, $H^{1}$- and $H^{2}$-norms that are completely explicit in the local time steps and local approximation degrees. Moreover, we show that the $hp$-version $C^{1}$-CPG method superconverges at the nodal points of the time partition with regard to the time steps and approximation degrees. As an application, we apply the $hp$-version $C^{1}$-CPG method to time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae036\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍并分析了用于二阶常微分方程非线性初值问题的 $hp$ 版本 $C^{1}$-continuous Petrov-Galerkin (CPG) 方法。我们推导出$L^{2}$-、$L^{\infty }$-、$H^{1}$-和$H^{2}$-规范中的先验误差估计值,这些误差估计值在局部时间步长和局部逼近度中是完全显式的。此外,我们还证明了 $hp$ 版本的 $C^{1}$-CPG 方法在时间分区的结点处超收敛,与时间步长和近似度有关。作为应用,我们将$hp$版$C^{1}$-CPG方法应用于非线性波方程的时间离散化。我们给出了几个数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations
We introduce and analyze an $hp$-version $C^{1}$-continuous Petrov–Galerkin (CPG) method for nonlinear initial value problems of second-order ordinary differential equations. We derive a-priori error estimates in the $L^{2}$-, $L^{\infty }$-, $H^{1}$- and $H^{2}$-norms that are completely explicit in the local time steps and local approximation degrees. Moreover, we show that the $hp$-version $C^{1}$-CPG method superconverges at the nodal points of the time partition with regard to the time steps and approximation degrees. As an application, we apply the $hp$-version $C^{1}$-CPG method to time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信