用于 6G 太赫兹通信的视觉辅助定位和光束聚焦

Seungnyun Kim;Jihoon Moon;Jiao Wu;Byonghyo Shim;Moe Z. Win
{"title":"用于 6G 太赫兹通信的视觉辅助定位和光束聚焦","authors":"Seungnyun Kim;Jihoon Moon;Jiao Wu;Byonghyo Shim;Moe Z. Win","doi":"10.1109/JSAC.2024.3413949","DOIUrl":null,"url":null,"abstract":"To meet the ever-increasing data rate demand expected in 6G networks, terahertz (THz) ultra-massive (UM) multiple-input multiple-output (MIMO) systems have gained much attention recently. One notable aspect of these systems is that the deployment of an extremely large-scale antenna array and high transmission frequency result in an expansion of the near-field region where the electromagnetic (EM) radiation is modeled as a spherical wave. In the near-field region, the channel becomes a function of a position of a user equipment (UE) rather than the direction, giving rise to a beam focusing operation that focuses the signal power onto the specific position. However, the traditional approaches relying on the sweeping of discretized beam codewords cannot support this ultra-sharp beam focusing operation in THz UM-MIMO systems. This paper proposes a novel beam focusing technique based on sensing and computer vision (CV) technologies. The essence of the proposed scheme is to estimate the UE’s position from the vision information using the CV technique and then generates the beam heading towards the estimated position. By replacing the discretized and time-consuming beam sweeping operation with a highly precise CV-based positioning, the positioning accuracy as well as the beam focusing gain can be improved significantly. Numerical results show that the proposed scheme achieves significant positioning accuracy and data rate gains over the conventional codebook-based beam focusing schemes.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 9","pages":"2503-2519"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-Aided Positioning and Beam Focusing for 6G Terahertz Communications\",\"authors\":\"Seungnyun Kim;Jihoon Moon;Jiao Wu;Byonghyo Shim;Moe Z. Win\",\"doi\":\"10.1109/JSAC.2024.3413949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the ever-increasing data rate demand expected in 6G networks, terahertz (THz) ultra-massive (UM) multiple-input multiple-output (MIMO) systems have gained much attention recently. One notable aspect of these systems is that the deployment of an extremely large-scale antenna array and high transmission frequency result in an expansion of the near-field region where the electromagnetic (EM) radiation is modeled as a spherical wave. In the near-field region, the channel becomes a function of a position of a user equipment (UE) rather than the direction, giving rise to a beam focusing operation that focuses the signal power onto the specific position. However, the traditional approaches relying on the sweeping of discretized beam codewords cannot support this ultra-sharp beam focusing operation in THz UM-MIMO systems. This paper proposes a novel beam focusing technique based on sensing and computer vision (CV) technologies. The essence of the proposed scheme is to estimate the UE’s position from the vision information using the CV technique and then generates the beam heading towards the estimated position. By replacing the discretized and time-consuming beam sweeping operation with a highly precise CV-based positioning, the positioning accuracy as well as the beam focusing gain can be improved significantly. Numerical results show that the proposed scheme achieves significant positioning accuracy and data rate gains over the conventional codebook-based beam focusing schemes.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"42 9\",\"pages\":\"2503-2519\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10570325/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10570325/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为满足 6G 网络中不断增长的数据传输速率需求,太赫兹(THz)超大规模(UM)多输入多输出(MIMO)系统近来备受关注。这些系统的一个显著特点是,超大规模天线阵列的部署和高传输频率导致了近场区域的扩大,在近场区域,电磁辐射被模拟为球形波。在近场区域,信道成为用户设备(UE)位置而非方向的函数,从而产生了将信号功率聚焦到特定位置的波束聚焦操作。然而,在太赫兹 UM-MIMO 系统中,依靠扫描离散波束码字的传统方法无法支持这种超清晰波束聚焦操作。本文提出了一种基于传感和计算机视觉(CV)技术的新型波束聚焦技术。所提方案的本质是利用 CV 技术从视觉信息中估计 UE 的位置,然后生成指向估计位置的波束。用基于 CV 的高精度定位取代离散和耗时的光束扫描操作,可显著提高定位精度和光束聚焦增益。数值结果表明,与传统的基于码本的波束聚焦方案相比,所提出的方案在定位精度和数据传输速率方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-Aided Positioning and Beam Focusing for 6G Terahertz Communications
To meet the ever-increasing data rate demand expected in 6G networks, terahertz (THz) ultra-massive (UM) multiple-input multiple-output (MIMO) systems have gained much attention recently. One notable aspect of these systems is that the deployment of an extremely large-scale antenna array and high transmission frequency result in an expansion of the near-field region where the electromagnetic (EM) radiation is modeled as a spherical wave. In the near-field region, the channel becomes a function of a position of a user equipment (UE) rather than the direction, giving rise to a beam focusing operation that focuses the signal power onto the specific position. However, the traditional approaches relying on the sweeping of discretized beam codewords cannot support this ultra-sharp beam focusing operation in THz UM-MIMO systems. This paper proposes a novel beam focusing technique based on sensing and computer vision (CV) technologies. The essence of the proposed scheme is to estimate the UE’s position from the vision information using the CV technique and then generates the beam heading towards the estimated position. By replacing the discretized and time-consuming beam sweeping operation with a highly precise CV-based positioning, the positioning accuracy as well as the beam focusing gain can be improved significantly. Numerical results show that the proposed scheme achieves significant positioning accuracy and data rate gains over the conventional codebook-based beam focusing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信