Honghu Chu, Diran Yu, Weiwei Chen, Jun Ma, Lu Deng
{"title":"基于渲染的轻量级网络,用于分割高分辨率裂纹图像","authors":"Honghu Chu, Diran Yu, Weiwei Chen, Jun Ma, Lu Deng","doi":"10.1111/mice.13290","DOIUrl":null,"url":null,"abstract":"High‐resolution (HR) crack images provide detailed structural assessments crucial for maintenance planning. However, the discrete nature of feature extraction in mainstream deep learning algorithms and computational limitations hinder refined segmentation. This study introduces a rendering‐based lightweight crack segmentation network (RLCSN) designed to efficiently predict refined masks for HR crack images. The RLCSN combines a deep semantic feature extraction architecture—merging Transformer with a super‐resolution boundary‐guided branch—to reduce environmental noise and preserve crack edge details. It also incorporates customized point‐wise refined rendering for training and inference, focusing computational resources on critical areas, and an efficient sparse training method to ensure efficient inference on commercial mobile computing platforms. Each RLCSN's components are validated through ablation studies and field tests, demonstrating its capability to enable unmanned aerial vehicle‐based inspections to detect cracks as narrow as 0.15 mm from a distance of 3 m, thereby enhancing inspection safety and efficiency.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"62 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rendering‐based lightweight network for segmentation of high‐resolution crack images\",\"authors\":\"Honghu Chu, Diran Yu, Weiwei Chen, Jun Ma, Lu Deng\",\"doi\":\"10.1111/mice.13290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐resolution (HR) crack images provide detailed structural assessments crucial for maintenance planning. However, the discrete nature of feature extraction in mainstream deep learning algorithms and computational limitations hinder refined segmentation. This study introduces a rendering‐based lightweight crack segmentation network (RLCSN) designed to efficiently predict refined masks for HR crack images. The RLCSN combines a deep semantic feature extraction architecture—merging Transformer with a super‐resolution boundary‐guided branch—to reduce environmental noise and preserve crack edge details. It also incorporates customized point‐wise refined rendering for training and inference, focusing computational resources on critical areas, and an efficient sparse training method to ensure efficient inference on commercial mobile computing platforms. Each RLCSN's components are validated through ablation studies and field tests, demonstrating its capability to enable unmanned aerial vehicle‐based inspections to detect cracks as narrow as 0.15 mm from a distance of 3 m, thereby enhancing inspection safety and efficiency.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13290\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13290","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A rendering‐based lightweight network for segmentation of high‐resolution crack images
High‐resolution (HR) crack images provide detailed structural assessments crucial for maintenance planning. However, the discrete nature of feature extraction in mainstream deep learning algorithms and computational limitations hinder refined segmentation. This study introduces a rendering‐based lightweight crack segmentation network (RLCSN) designed to efficiently predict refined masks for HR crack images. The RLCSN combines a deep semantic feature extraction architecture—merging Transformer with a super‐resolution boundary‐guided branch—to reduce environmental noise and preserve crack edge details. It also incorporates customized point‐wise refined rendering for training and inference, focusing computational resources on critical areas, and an efficient sparse training method to ensure efficient inference on commercial mobile computing platforms. Each RLCSN's components are validated through ablation studies and field tests, demonstrating its capability to enable unmanned aerial vehicle‐based inspections to detect cracks as narrow as 0.15 mm from a distance of 3 m, thereby enhancing inspection safety and efficiency.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.