利用远距离纠缠的力量进行克利福德电路合成

Willers Yang;Patrick Rall
{"title":"利用远距离纠缠的力量进行克利福德电路合成","authors":"Willers Yang;Patrick Rall","doi":"10.1109/TQE.2024.3402085","DOIUrl":null,"url":null,"abstract":"In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations and fan-out gates. We derive bounds on the circuit size for several well-studied problems, such as CZ circuit, CX circuit, and Clifford circuit synthesis. In particular, in an architecture using one such entanglement bus, we give a synthesis scheme for arbitrary Clifford operations requiring at most \n<inline-formula><tex-math>$2n+1$</tex-math></inline-formula>\n layers of entangled state injections, which can be computed classically in \n<inline-formula><tex-math>$O(n^{3})$</tex-math></inline-formula>\n time. In a square-lattice architecture with two entanglement buses, we show that a graph state can be synthesized using at most \n<inline-formula><tex-math>$\\lceil \\frac{1}{2}n\\rceil +1$</tex-math></inline-formula>\n layers of GHZ state injections, and Clifford operations require only \n<inline-formula><tex-math>$\\lceil \\frac{3}{2} n \\rceil + O(\\sqrt{n})$</tex-math></inline-formula>\n layers of GHZ state injections.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531653","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis\",\"authors\":\"Willers Yang;Patrick Rall\",\"doi\":\"10.1109/TQE.2024.3402085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations and fan-out gates. We derive bounds on the circuit size for several well-studied problems, such as CZ circuit, CX circuit, and Clifford circuit synthesis. In particular, in an architecture using one such entanglement bus, we give a synthesis scheme for arbitrary Clifford operations requiring at most \\n<inline-formula><tex-math>$2n+1$</tex-math></inline-formula>\\n layers of entangled state injections, which can be computed classically in \\n<inline-formula><tex-math>$O(n^{3})$</tex-math></inline-formula>\\n time. In a square-lattice architecture with two entanglement buses, we show that a graph state can be synthesized using at most \\n<inline-formula><tex-math>$\\\\lceil \\\\frac{1}{2}n\\\\rceil +1$</tex-math></inline-formula>\\n layers of GHZ state injections, and Clifford operations require only \\n<inline-formula><tex-math>$\\\\lceil \\\\frac{3}{2} n \\\\rceil + O(\\\\sqrt{n})$</tex-math></inline-formula>\\n layers of GHZ state injections.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531653\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10531653/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10531653/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超导架构中,有限的连通性仍然是量子电路合成和编译的重大挑战。我们考虑了纠缠辅助计算模型,通过注入大型格林伯格-霍恩-蔡林格(Greenberger-Horne-Zeilinger,GHZ)态实现远距离运算。这些态是利用充当 "纠缠总线 "的辅助量子比特准备的,可以解锁全局操作原语,如多量子比特保利旋转和扇出门。我们推导出了 CZ 电路、CX 电路和克利福德电路合成等几个经过深入研究的问题的电路大小界限。特别是,在一个使用这种纠缠总线的架构中,我们给出了一个任意克利福德运算的合成方案,它最多需要 2n+1$ 层纠缠状态注入,可以在 $O(n^{3})$ 时间内经典计算。在一个有两条纠缠总线的方阵架构中,我们证明一个图状态最多只需要 $\lceil \frac{1}{2}n\rceil +1$ 层的 GHZ 状态注入就可以合成,而克里福德操作只需要 $\lceil \frac{3}{2} n \rceil + O(\sqrt{n})$ 层的 GHZ 状态注入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis
In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations and fan-out gates. We derive bounds on the circuit size for several well-studied problems, such as CZ circuit, CX circuit, and Clifford circuit synthesis. In particular, in an architecture using one such entanglement bus, we give a synthesis scheme for arbitrary Clifford operations requiring at most $2n+1$ layers of entangled state injections, which can be computed classically in $O(n^{3})$ time. In a square-lattice architecture with two entanglement buses, we show that a graph state can be synthesized using at most $\lceil \frac{1}{2}n\rceil +1$ layers of GHZ state injections, and Clifford operations require only $\lceil \frac{3}{2} n \rceil + O(\sqrt{n})$ layers of GHZ state injections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信