Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou
{"title":"种间生态竞争使腐烂的革兰氏菌电活性生物膜恢复活力。","authors":"Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou","doi":"10.1093/ismejo/wrae118","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227281/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interspecies ecological competition rejuvenates decayed Geobacter electroactive biofilm.\",\"authors\":\"Yin Ye, Lu Zhang, Xiaohui Hong, Man Chen, Xing Liu, Shungui Zhou\",\"doi\":\"10.1093/ismejo/wrae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227281/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae118\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae118","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.