Chaemoon Lim, Mei Jing Piao, Kyoung Ah Kang, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Dae Whan Kim, Joo Mi Yi, Yung Hyun Choi, Jin Won Hyun
{"title":"1,3,5-三羟基苯通过 AMPK 和 JNK 信号通路对紫外线诱导的 NADPH 氧化酶 4 起抑制作用","authors":"Chaemoon Lim, Mei Jing Piao, Kyoung Ah Kang, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Dae Whan Kim, Joo Mi Yi, Yung Hyun Choi, Jin Won Hyun","doi":"10.4062/biomolther.2024.054","DOIUrl":null,"url":null,"abstract":"<p><p>Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiation-induced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP<sup>+</sup>/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both <i>in vitro</i> and <i>in vivo</i>, and suppressed UVB-induced ROS generation via NADP<sup>+</sup> production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"32 4","pages":"499-507"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibitory Action of 1,3,5-Trihydroxybenzene on UVB-Induced NADPH Oxidase 4 through AMPK and JNK Signaling Pathways.\",\"authors\":\"Chaemoon Lim, Mei Jing Piao, Kyoung Ah Kang, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Dae Whan Kim, Joo Mi Yi, Yung Hyun Choi, Jin Won Hyun\",\"doi\":\"10.4062/biomolther.2024.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiation-induced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP<sup>+</sup>/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both <i>in vitro</i> and <i>in vivo</i>, and suppressed UVB-induced ROS generation via NADP<sup>+</sup> production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\"32 4\",\"pages\":\"499-507\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.054\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Inhibitory Action of 1,3,5-Trihydroxybenzene on UVB-Induced NADPH Oxidase 4 through AMPK and JNK Signaling Pathways.
Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiation-induced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.