平面图的邻域复杂性

IF 1 2区 数学 Q1 MATHEMATICS
Gwenaël Joret, Clément Rambaud
{"title":"平面图的邻域复杂性","authors":"Gwenaël Joret, Clément Rambaud","doi":"10.1007/s00493-024-00110-6","DOIUrl":null,"url":null,"abstract":"<p>Reidl et al. (Eur J Comb 75:152–168, 2019) characterized graph classes of bounded expansion as follows: A class <span>\\({\\mathcal {C}}\\)</span> closed under subgraphs has bounded expansion if and only if there exists a function <span>\\(f:{\\mathbb {N}} \\rightarrow {\\mathbb {N}}\\)</span> such that for every graph <span>\\(G \\in {\\mathcal {C}}\\)</span>, every nonempty subset <i>A</i> of vertices in <i>G</i> and every nonnegative integer <i>r</i>, the number of distinct intersections between <i>A</i> and a ball of radius <i>r</i> in <i>G</i> is at most <i>f</i>(<i>r</i>) |<i>A</i>|. When <span>\\({\\mathcal {C}}\\)</span> has bounded expansion, the function <i>f</i>(<i>r</i>) coming from existing proofs is typically exponential. In the special case of planar graphs, it was conjectured by Sokołowski (Electron J Comb 30(2):P2.3, 2023) that <i>f</i>(<i>r</i>) could be taken to be a polynomial. In this paper, we prove this conjecture: For every nonempty subset <i>A</i> of vertices in a planar graph <i>G</i> and every nonnegative integer <i>r</i>, the number of distinct intersections between <i>A</i> and a ball of radius <i>r</i> in <i>G</i> is <span>\\({{\\,\\mathrm{{\\mathcal {O}}}\\,}}(r^4 |A|)\\)</span>. We also show that a polynomial bound holds more generally for every proper minor-closed class of graphs.\n</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighborhood Complexity of Planar Graphs\",\"authors\":\"Gwenaël Joret, Clément Rambaud\",\"doi\":\"10.1007/s00493-024-00110-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reidl et al. (Eur J Comb 75:152–168, 2019) characterized graph classes of bounded expansion as follows: A class <span>\\\\({\\\\mathcal {C}}\\\\)</span> closed under subgraphs has bounded expansion if and only if there exists a function <span>\\\\(f:{\\\\mathbb {N}} \\\\rightarrow {\\\\mathbb {N}}\\\\)</span> such that for every graph <span>\\\\(G \\\\in {\\\\mathcal {C}}\\\\)</span>, every nonempty subset <i>A</i> of vertices in <i>G</i> and every nonnegative integer <i>r</i>, the number of distinct intersections between <i>A</i> and a ball of radius <i>r</i> in <i>G</i> is at most <i>f</i>(<i>r</i>) |<i>A</i>|. When <span>\\\\({\\\\mathcal {C}}\\\\)</span> has bounded expansion, the function <i>f</i>(<i>r</i>) coming from existing proofs is typically exponential. In the special case of planar graphs, it was conjectured by Sokołowski (Electron J Comb 30(2):P2.3, 2023) that <i>f</i>(<i>r</i>) could be taken to be a polynomial. In this paper, we prove this conjecture: For every nonempty subset <i>A</i> of vertices in a planar graph <i>G</i> and every nonnegative integer <i>r</i>, the number of distinct intersections between <i>A</i> and a ball of radius <i>r</i> in <i>G</i> is <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathcal {O}}}\\\\,}}(r^4 |A|)\\\\)</span>. We also show that a polynomial bound holds more generally for every proper minor-closed class of graphs.\\n</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00110-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00110-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Reidl 等人(Eur J Comb 75:152-168, 2019)对有界扩展的图类做了如下描述:当且仅当存在一个函数(f:{对于每一个图(G 在 {\mathcal {C}}中)、G 中的每一个非空顶点子集 A 以及每一个非负整数 r,A 与 G 中半径为 r 的球之间的不同交点的个数最多为 f(r) |A|。当 \({\mathcal {C}}\) 有界扩展时,现有证明中的函数 f(r) 通常是指数函数。在平面图的特殊情况下,索科洛夫斯基(Electron J Comb 30(2):P2.3, 2023)猜想 f(r) 可以看作是一个多项式。本文将证明这一猜想:对于平面图 G 中的每一个非空顶点子集 A 和每一个非负整数 r,A 与 G 中半径为 r 的球之间的不同交点数是({{,\mathrm{{\mathcal {O}}\,}}(r^4 |A|)\)。我们还证明,对于每一个适当的小封闭图类,多项式约束更普遍地成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neighborhood Complexity of Planar Graphs

Neighborhood Complexity of Planar Graphs

Reidl et al. (Eur J Comb 75:152–168, 2019) characterized graph classes of bounded expansion as follows: A class \({\mathcal {C}}\) closed under subgraphs has bounded expansion if and only if there exists a function \(f:{\mathbb {N}} \rightarrow {\mathbb {N}}\) such that for every graph \(G \in {\mathcal {C}}\), every nonempty subset A of vertices in G and every nonnegative integer r, the number of distinct intersections between A and a ball of radius r in G is at most f(r) |A|. When \({\mathcal {C}}\) has bounded expansion, the function f(r) coming from existing proofs is typically exponential. In the special case of planar graphs, it was conjectured by Sokołowski (Electron J Comb 30(2):P2.3, 2023) that f(r) could be taken to be a polynomial. In this paper, we prove this conjecture: For every nonempty subset A of vertices in a planar graph G and every nonnegative integer r, the number of distinct intersections between A and a ball of radius r in G is \({{\,\mathrm{{\mathcal {O}}}\,}}(r^4 |A|)\). We also show that a polynomial bound holds more generally for every proper minor-closed class of graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信