Marion Egger, Jeannine Bergmann, Carmen Krewer, Klaus Jahn, Friedemann Müller
{"title":"中风后的感官刺激和机器人辅助手臂训练:随机对照试验。","authors":"Marion Egger, Jeannine Bergmann, Carmen Krewer, Klaus Jahn, Friedemann Müller","doi":"10.1097/NPT.0000000000000486","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy.</p><p><strong>Methods: </strong>Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up.</p><p><strong>Results: </strong>Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose.</p><p><strong>Discussion and conclusions: </strong>Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation.</p><p><strong>Video abstract available: </strong>for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).</p>","PeriodicalId":49030,"journal":{"name":"Journal of Neurologic Physical Therapy","volume":" ","pages":"178-187"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial.\",\"authors\":\"Marion Egger, Jeannine Bergmann, Carmen Krewer, Klaus Jahn, Friedemann Müller\",\"doi\":\"10.1097/NPT.0000000000000486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy.</p><p><strong>Methods: </strong>Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up.</p><p><strong>Results: </strong>Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose.</p><p><strong>Discussion and conclusions: </strong>Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation.</p><p><strong>Video abstract available: </strong>for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).</p>\",\"PeriodicalId\":49030,\"journal\":{\"name\":\"Journal of Neurologic Physical Therapy\",\"volume\":\" \",\"pages\":\"178-187\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurologic Physical Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/NPT.0000000000000486\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurologic Physical Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/NPT.0000000000000486","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial.
Background and purpose: Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy.
Methods: Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up.
Results: Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose.
Discussion and conclusions: Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation.
Video abstract available: for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
期刊介绍:
The Journal of Neurologic Physical Therapy (JNPT) is an indexed resource for dissemination of research-based evidence related to neurologic physical therapy intervention. High standards of quality are maintained through a rigorous, double-blinded, peer-review process and adherence to standards recommended by the International Committee of Medical Journal Editors. With an international editorial board made up of preeminent researchers and clinicians, JNPT publishes articles of global relevance for examination, evaluation, prognosis, intervention, and outcomes for individuals with movement deficits due to neurologic conditions. Through systematic reviews, research articles, case studies, and clinical perspectives, JNPT promotes the integration of evidence into theory, education, research, and practice of neurologic physical therapy, spanning the continuum from pathophysiology to societal participation.