粉碎垃圾流的图像捕捉、分割和数据分析。

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Waste Management & Research Pub Date : 2024-09-01 Epub Date: 2024-06-23 DOI:10.1177/0734242X241259661
Heimo Gursch, Elke Schlager, Franz Thaler, Georg Waltner, Harald Ganster, Alfred Rinnhofer, Malte Jaschik, Christian Oberwinkler, Reinhard Meisenbichler, Horst Bischof, Roman Kern
{"title":"粉碎垃圾流的图像捕捉、分割和数据分析。","authors":"Heimo Gursch, Elke Schlager, Franz Thaler, Georg Waltner, Harald Ganster, Alfred Rinnhofer, Malte Jaschik, Christian Oberwinkler, Reinhard Meisenbichler, Horst Bischof, Roman Kern","doi":"10.1177/0734242X241259661","DOIUrl":null,"url":null,"abstract":"<p><p>Refuse sorting is an important cornerstone of the recycling industry, but ever-changing refuse compositions and the desire to increase recycling rates still pose many unsolved challenges. The digitalisation of refuse sorting plants promises to overcome these challenges by optimising and automatically adapting the sorting process. This publication describes a system for image capturing, segmentation-based refuse recognition and data analysis of shredded refuse streams. The image capturing collects multispectral 2D and 3D images of the refuse streams on conveyor belts. The image recognition performs a semantic segmentation of the images to determine the refuse composition from the 2D images, whereas the 3D images approximate the volumes on the conveyor belts. The semantic segmentation is done by a combined convolutional neural network model, consisting of a foreground-background and a refuse class segmentation. Both models rely on synthetic training data to reduce the necessary amount of manually labelled training data, whereas the final segmentation performance reaches an Intersection over Union of up to 75%. The results of the semantic segmentation and volume estimation are combined with data of the shredding machinery by transforming it into a unified representation. This combined dataset is the basis for estimating the processed refuse masses from the semantic segmentation and volume estimation.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"738-746"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image capturing, segmentation and data analysis of shredded refuse streams.\",\"authors\":\"Heimo Gursch, Elke Schlager, Franz Thaler, Georg Waltner, Harald Ganster, Alfred Rinnhofer, Malte Jaschik, Christian Oberwinkler, Reinhard Meisenbichler, Horst Bischof, Roman Kern\",\"doi\":\"10.1177/0734242X241259661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Refuse sorting is an important cornerstone of the recycling industry, but ever-changing refuse compositions and the desire to increase recycling rates still pose many unsolved challenges. The digitalisation of refuse sorting plants promises to overcome these challenges by optimising and automatically adapting the sorting process. This publication describes a system for image capturing, segmentation-based refuse recognition and data analysis of shredded refuse streams. The image capturing collects multispectral 2D and 3D images of the refuse streams on conveyor belts. The image recognition performs a semantic segmentation of the images to determine the refuse composition from the 2D images, whereas the 3D images approximate the volumes on the conveyor belts. The semantic segmentation is done by a combined convolutional neural network model, consisting of a foreground-background and a refuse class segmentation. Both models rely on synthetic training data to reduce the necessary amount of manually labelled training data, whereas the final segmentation performance reaches an Intersection over Union of up to 75%. The results of the semantic segmentation and volume estimation are combined with data of the shredding machinery by transforming it into a unified representation. This combined dataset is the basis for estimating the processed refuse masses from the semantic segmentation and volume estimation.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"738-746\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X241259661\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241259661","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

垃圾分拣是回收利用行业的重要基石,但不断变化的垃圾成分和提高回收利用率的愿望仍然提出了许多尚未解决的挑战。垃圾分拣设备的数字化有望通过优化和自动调整分拣流程来克服这些挑战。本出版物介绍了一种用于图像捕捉、基于分段的垃圾识别和碎垃圾流数据分析的系统。图像捕捉收集传送带上垃圾流的多光谱二维和三维图像。图像识别对图像进行语义分割,以确定二维图像中的垃圾成分,而三维图像则近似显示传送带上的垃圾量。语义分割由一个组合卷积神经网络模型完成,包括前景-背景和垃圾类别分割。这两个模型都依赖于合成训练数据,以减少必要的人工标注训练数据量,而最终的分割性能达到了高达 75% 的交叉联合。语义分割和体积估算的结果与碎纸机械的数据相结合,将其转换为统一的表示方法。这个组合数据集是估算语义分割和体积估算所处理的垃圾质量的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image capturing, segmentation and data analysis of shredded refuse streams.

Refuse sorting is an important cornerstone of the recycling industry, but ever-changing refuse compositions and the desire to increase recycling rates still pose many unsolved challenges. The digitalisation of refuse sorting plants promises to overcome these challenges by optimising and automatically adapting the sorting process. This publication describes a system for image capturing, segmentation-based refuse recognition and data analysis of shredded refuse streams. The image capturing collects multispectral 2D and 3D images of the refuse streams on conveyor belts. The image recognition performs a semantic segmentation of the images to determine the refuse composition from the 2D images, whereas the 3D images approximate the volumes on the conveyor belts. The semantic segmentation is done by a combined convolutional neural network model, consisting of a foreground-background and a refuse class segmentation. Both models rely on synthetic training data to reduce the necessary amount of manually labelled training data, whereas the final segmentation performance reaches an Intersection over Union of up to 75%. The results of the semantic segmentation and volume estimation are combined with data of the shredding machinery by transforming it into a unified representation. This combined dataset is the basis for estimating the processed refuse masses from the semantic segmentation and volume estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信