贝索夫空间中分数卷积椭圆和抛物线算子的定性特性

IF 2.5 2区 数学 Q1 MATHEMATICS
Veli Shakhmurov, Rishad Shahmurov
{"title":"贝索夫空间中分数卷积椭圆和抛物线算子的定性特性","authors":"Veli Shakhmurov, Rishad Shahmurov","doi":"10.1007/s13540-024-00302-3","DOIUrl":null,"url":null,"abstract":"<p>The maximal <span>\\(B_{p,q}^{s}\\)</span>-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in <span>\\( B_{p,q}^{s}\\)</span> and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the <span>\\(B_{p,q}^{s}\\)</span>-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"36 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces\",\"authors\":\"Veli Shakhmurov, Rishad Shahmurov\",\"doi\":\"10.1007/s13540-024-00302-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The maximal <span>\\\\(B_{p,q}^{s}\\\\)</span>-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in <span>\\\\( B_{p,q}^{s}\\\\)</span> and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the <span>\\\\(B_{p,q}^{s}\\\\)</span>-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00302-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00302-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了分数卷积椭圆方程的最大 \(B_{p,q}^{s}\-regularity 特性。特别是,研究证明了由该非局部椭圆方程产生的算子在 \( B_{p,q}^{s}\) 中是扇形的,同时也是一个解析半群的生成器。此外,我们还得到了非局部分数抛物方程在 Besov 空间中的好拟性。然后利用线性问题的 \(B_{p,q}^{s}\)-正则性质,建立了相应分数非线性方程最大正则解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces

The maximal \(B_{p,q}^{s}\)-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in \( B_{p,q}^{s}\) and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the \(B_{p,q}^{s}\)-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信