低成本量子力学描述符,用于建立数据高效的皮肤敏化 QSAR 模型

IF 2.9 Q2 TOXICOLOGY
Davy Guan, Raymond Lui, Slade T. Mattthews
{"title":"低成本量子力学描述符,用于建立数据高效的皮肤敏化 QSAR 模型","authors":"Davy Guan,&nbsp;Raymond Lui,&nbsp;Slade T. Mattthews","doi":"10.1016/j.crtox.2024.100183","DOIUrl":null,"url":null,"abstract":"<div><p>Quantitative Structure Activity Relationship modelling methodologies need to incorporate relevant mechanistic information to have high predictive performance and validity. Electrophilic reactivity is a common mechanistic feature of skin sensitization endpoints which could be concisely characterized with electronic descriptors which is key to enabling the modelling of small datasets in this domain. However, quantum mechanical methodologies have previously featured high computational costs which would exclude the use of large datasets. Consequently, we investigate the use of electronic descriptors calculated using the Hartree Fock with 3 corrections (Hf-3c) method, a low-cost <em>ab initio</em> methodology that has higher chemical accuracy than previous semiempirical methodologies for modelling <em>in vitro</em> skin sensitization assay outcomes. We also model the Ames assay as a surrogate for determining skin sensitization outcomes. The quantum chemical descriptors calculated using the Hf-3c method with conductor-like polarizable continuum model (CPCM) implicit solvation found improved QSAR model performance for the <em>in vitro</em> Ames (<em>n</em> = 6049, 0.770 AUC), KeratinoSens (<em>n</em> = 164, 0.763 AUC), and Direct Peptide Reactivity Assay (<em>n</em> = 122, 0.750 AUC) datasets, with their combination producing high predictive performance for unseen <em>in vivo</em> Local Lymph Node Assay (<em>n</em> = 86, 0.789 AUC) and Human Repeated Insult Patch Test (<em>n</em> = 86, 0.791 AUC) assay toxicant outcomes.</p></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"7 ","pages":"Article 100183"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666027X24000367/pdfft?md5=d5bfc894935ff6bbfb35bf0733792275&pid=1-s2.0-S2666027X24000367-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-cost quantum mechanical descriptors for data efficient skin sensitization QSAR models\",\"authors\":\"Davy Guan,&nbsp;Raymond Lui,&nbsp;Slade T. Mattthews\",\"doi\":\"10.1016/j.crtox.2024.100183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantitative Structure Activity Relationship modelling methodologies need to incorporate relevant mechanistic information to have high predictive performance and validity. Electrophilic reactivity is a common mechanistic feature of skin sensitization endpoints which could be concisely characterized with electronic descriptors which is key to enabling the modelling of small datasets in this domain. However, quantum mechanical methodologies have previously featured high computational costs which would exclude the use of large datasets. Consequently, we investigate the use of electronic descriptors calculated using the Hartree Fock with 3 corrections (Hf-3c) method, a low-cost <em>ab initio</em> methodology that has higher chemical accuracy than previous semiempirical methodologies for modelling <em>in vitro</em> skin sensitization assay outcomes. We also model the Ames assay as a surrogate for determining skin sensitization outcomes. The quantum chemical descriptors calculated using the Hf-3c method with conductor-like polarizable continuum model (CPCM) implicit solvation found improved QSAR model performance for the <em>in vitro</em> Ames (<em>n</em> = 6049, 0.770 AUC), KeratinoSens (<em>n</em> = 164, 0.763 AUC), and Direct Peptide Reactivity Assay (<em>n</em> = 122, 0.750 AUC) datasets, with their combination producing high predictive performance for unseen <em>in vivo</em> Local Lymph Node Assay (<em>n</em> = 86, 0.789 AUC) and Human Repeated Insult Patch Test (<em>n</em> = 86, 0.791 AUC) assay toxicant outcomes.</p></div>\",\"PeriodicalId\":11236,\"journal\":{\"name\":\"Current Research in Toxicology\",\"volume\":\"7 \",\"pages\":\"Article 100183\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000367/pdfft?md5=d5bfc894935ff6bbfb35bf0733792275&pid=1-s2.0-S2666027X24000367-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

定量结构与活性关系建模方法需要纳入相关的机理信息,才能具有较高的预测性能和有效性。亲电反应性是皮肤过敏终点的一个常见机理特征,可以用电子描述符对其进行简明描述,这是在该领域建立小型数据集模型的关键。然而,量子力学方法的计算成本较高,因此无法使用大型数据集。因此,我们研究了使用哈特里-福克三修正(Hf-3c)方法计算的电子描述符,这是一种低成本的自创方法,与以前的半经验方法相比,它具有更高的化学准确性,可用于体外皮肤过敏检测结果建模。我们还建立了艾姆斯试验模型,作为确定皮肤过敏结果的替代方法。使用 Hf-3c 方法计算的量子化学描述因子与类导体极化连续体模型(CPCM)隐含溶解发现,QSAR 模型在体外艾姆斯(n = 6049,0.770 AUC)、KeratinoSens(n = 164,0.763 AUC)和直接肽反应性检测(n = 122,0.750 AUC)数据集的 QSAR 模型性能,它们的组合对未见的体内局部淋巴结检测(n = 86,0.789 AUC)和人体重复损伤斑贴试验(n = 86,0.791 AUC)检测毒物结果具有很高的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-cost quantum mechanical descriptors for data efficient skin sensitization QSAR models

Low-cost quantum mechanical descriptors for data efficient skin sensitization QSAR models

Quantitative Structure Activity Relationship modelling methodologies need to incorporate relevant mechanistic information to have high predictive performance and validity. Electrophilic reactivity is a common mechanistic feature of skin sensitization endpoints which could be concisely characterized with electronic descriptors which is key to enabling the modelling of small datasets in this domain. However, quantum mechanical methodologies have previously featured high computational costs which would exclude the use of large datasets. Consequently, we investigate the use of electronic descriptors calculated using the Hartree Fock with 3 corrections (Hf-3c) method, a low-cost ab initio methodology that has higher chemical accuracy than previous semiempirical methodologies for modelling in vitro skin sensitization assay outcomes. We also model the Ames assay as a surrogate for determining skin sensitization outcomes. The quantum chemical descriptors calculated using the Hf-3c method with conductor-like polarizable continuum model (CPCM) implicit solvation found improved QSAR model performance for the in vitro Ames (n = 6049, 0.770 AUC), KeratinoSens (n = 164, 0.763 AUC), and Direct Peptide Reactivity Assay (n = 122, 0.750 AUC) datasets, with their combination producing high predictive performance for unseen in vivo Local Lymph Node Assay (n = 86, 0.789 AUC) and Human Repeated Insult Patch Test (n = 86, 0.791 AUC) assay toxicant outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Toxicology
Current Research in Toxicology Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
4.70
自引率
3.00%
发文量
33
审稿时长
82 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信