Hui Fang, Yuxin Chen, Guoheng Xing, Aijun Li, Yong Liu
{"title":"二维浮动复合结构多分离模块的水弹性优化方法","authors":"Hui Fang, Yuxin Chen, Guoheng Xing, Aijun Li, Yong Liu","doi":"10.1016/j.marstruc.2024.103658","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a hydroelastic optimization method for multiseparated modules of high-specific-strength floating structures with low-weight cores and high-strength surfaces in two-dimension. A sixth-order dynamical model of this floating composite structure is deduced from the fluid-structure interaction condition of the wave surface. Drawing upon potential flow theory and separation of variables, we discretize the water domain into plate-covered areas and open water areas, in which the analytical solution for the interaction between waves and the floating composite structure with any number of separated modules is derived. The convergence and accuracy of the analytical solution are verified by calculating the transmission and reflection coefficients of the waves and various hydrodynamic parameters, including deflection, bending moment, and shear force. Furthermore, the effects of the number of modules, module spacing, and core thickness on the hydrodynamic parameters of the floating structure are investigated. The module number and structural-component-material parameters are coupled in influencing the hydroelastic behavior and mechanical responses of this floating cluster. This proposed method is an alternative optimization technique for considering the sea state, spatial modules, structural features and material properties in practical engineering applications.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"97 ","pages":"Article 103658"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hydroelastic optimization method for multiseparated modules of floating composite structures in two-dimension\",\"authors\":\"Hui Fang, Yuxin Chen, Guoheng Xing, Aijun Li, Yong Liu\",\"doi\":\"10.1016/j.marstruc.2024.103658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a hydroelastic optimization method for multiseparated modules of high-specific-strength floating structures with low-weight cores and high-strength surfaces in two-dimension. A sixth-order dynamical model of this floating composite structure is deduced from the fluid-structure interaction condition of the wave surface. Drawing upon potential flow theory and separation of variables, we discretize the water domain into plate-covered areas and open water areas, in which the analytical solution for the interaction between waves and the floating composite structure with any number of separated modules is derived. The convergence and accuracy of the analytical solution are verified by calculating the transmission and reflection coefficients of the waves and various hydrodynamic parameters, including deflection, bending moment, and shear force. Furthermore, the effects of the number of modules, module spacing, and core thickness on the hydrodynamic parameters of the floating structure are investigated. The module number and structural-component-material parameters are coupled in influencing the hydroelastic behavior and mechanical responses of this floating cluster. This proposed method is an alternative optimization technique for considering the sea state, spatial modules, structural features and material properties in practical engineering applications.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"97 \",\"pages\":\"Article 103658\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000868\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000868","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A hydroelastic optimization method for multiseparated modules of floating composite structures in two-dimension
This study proposes a hydroelastic optimization method for multiseparated modules of high-specific-strength floating structures with low-weight cores and high-strength surfaces in two-dimension. A sixth-order dynamical model of this floating composite structure is deduced from the fluid-structure interaction condition of the wave surface. Drawing upon potential flow theory and separation of variables, we discretize the water domain into plate-covered areas and open water areas, in which the analytical solution for the interaction between waves and the floating composite structure with any number of separated modules is derived. The convergence and accuracy of the analytical solution are verified by calculating the transmission and reflection coefficients of the waves and various hydrodynamic parameters, including deflection, bending moment, and shear force. Furthermore, the effects of the number of modules, module spacing, and core thickness on the hydrodynamic parameters of the floating structure are investigated. The module number and structural-component-material parameters are coupled in influencing the hydroelastic behavior and mechanical responses of this floating cluster. This proposed method is an alternative optimization technique for considering the sea state, spatial modules, structural features and material properties in practical engineering applications.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.