{"title":"数据路径中的 PLS 多步回归","authors":"Agnar Höskuldsson","doi":"10.1016/j.chemolab.2024.105167","DOIUrl":null,"url":null,"abstract":"<div><p>Here is presented a procedure that extends standard PLS Regression to several data matrices in a path. The basic idea is to convert the path of data matrices into interconnected regressions. Forecasts by PLS are extended to multi-step forecasts for each data matrix in the path. We study how far we can make forecasts, i.e., how far we can ‘see’ in the path. It is shown how data paths are divided into parts, where multi-step forecasting can be carried out within each part. The principles of PLS are used to suggest criteria for estimation in the regressions. These methods can be used to supervise a complex path of industrial chemical/biological processes. It is shown how expanding and contracting paths, which is common for industrial processes, can be handled. These methods can be used to carry out analysis of general path models. It is shown briefly by an example how a Structural Equations Model, SEM, can be converted into a collection of sequential paths that can be analyzed by present methods. The results suggest that conclusions made at SEM analysis may not always be reliable. The theory is applied to process data. It is shown how we work with the analysis of each regression in a similar way as in PLS.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105167"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLS multi-step regressions in data paths\",\"authors\":\"Agnar Höskuldsson\",\"doi\":\"10.1016/j.chemolab.2024.105167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here is presented a procedure that extends standard PLS Regression to several data matrices in a path. The basic idea is to convert the path of data matrices into interconnected regressions. Forecasts by PLS are extended to multi-step forecasts for each data matrix in the path. We study how far we can make forecasts, i.e., how far we can ‘see’ in the path. It is shown how data paths are divided into parts, where multi-step forecasting can be carried out within each part. The principles of PLS are used to suggest criteria for estimation in the regressions. These methods can be used to supervise a complex path of industrial chemical/biological processes. It is shown how expanding and contracting paths, which is common for industrial processes, can be handled. These methods can be used to carry out analysis of general path models. It is shown briefly by an example how a Structural Equations Model, SEM, can be converted into a collection of sequential paths that can be analyzed by present methods. The results suggest that conclusions made at SEM analysis may not always be reliable. The theory is applied to process data. It is shown how we work with the analysis of each regression in a similar way as in PLS.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"251 \",\"pages\":\"Article 105167\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001072\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001072","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Here is presented a procedure that extends standard PLS Regression to several data matrices in a path. The basic idea is to convert the path of data matrices into interconnected regressions. Forecasts by PLS are extended to multi-step forecasts for each data matrix in the path. We study how far we can make forecasts, i.e., how far we can ‘see’ in the path. It is shown how data paths are divided into parts, where multi-step forecasting can be carried out within each part. The principles of PLS are used to suggest criteria for estimation in the regressions. These methods can be used to supervise a complex path of industrial chemical/biological processes. It is shown how expanding and contracting paths, which is common for industrial processes, can be handled. These methods can be used to carry out analysis of general path models. It is shown briefly by an example how a Structural Equations Model, SEM, can be converted into a collection of sequential paths that can be analyzed by present methods. The results suggest that conclusions made at SEM analysis may not always be reliable. The theory is applied to process data. It is shown how we work with the analysis of each regression in a similar way as in PLS.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.