SETD7 通过甲基化介导的 TAF7 促进透明细胞肾细胞癌的细胞增殖和迁移

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
International Journal of Biological Sciences Pub Date : 2024-05-19 eCollection Date: 2024-01-01 DOI:10.7150/ijbs.93201
Jinyuan Zhang, Baojun Duan, Fang Li, Xintao Jing, Rufeng Li, Shuang Cai, Li Cao, Qiuyu Jiang, Jing Zhou, Jiancheng Zhou, Yannan Qin, Xiaofei Wang, Dongdong Tong, Chen Huang
{"title":"SETD7 通过甲基化介导的 TAF7 促进透明细胞肾细胞癌的细胞增殖和迁移","authors":"Jinyuan Zhang, Baojun Duan, Fang Li, Xintao Jing, Rufeng Li, Shuang Cai, Li Cao, Qiuyu Jiang, Jing Zhou, Jiancheng Zhou, Yannan Qin, Xiaofei Wang, Dongdong Tong, Chen Huang","doi":"10.7150/ijbs.93201","DOIUrl":null,"url":null,"abstract":"<p><p>SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186372/pdf/","citationCount":"0","resultStr":"{\"title\":\"SETD7 Promotes Cell Proliferation and Migration via Methylation-mediated TAF7 in Clear Cell Renal Cell Carcinoma.\",\"authors\":\"Jinyuan Zhang, Baojun Duan, Fang Li, Xintao Jing, Rufeng Li, Shuang Cai, Li Cao, Qiuyu Jiang, Jing Zhou, Jiancheng Zhou, Yannan Qin, Xiaofei Wang, Dongdong Tong, Chen Huang\",\"doi\":\"10.7150/ijbs.93201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.</p>\",\"PeriodicalId\":13762,\"journal\":{\"name\":\"International Journal of Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7150/ijbs.93201\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.93201","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

含SET结构域的7(SETD7)是组蛋白甲基转移酶的成员之一,在多种肿瘤类型中异常表达。然而,SETD7在透明细胞肾细胞癌(ccRCC)中的生物学功能和潜在分子机制仍不清楚。在这里,我们探讨了SETD7-TAF7-CCNA2轴对ccRCC增殖和转移的生物学效应。我们发现 SETD7 和 TAF7 均上调,并显著促进了 ccRCC 细胞的增殖和迁移。同时,SETD7和TAF7的表达呈显著正相关,且二者在细胞核内共定位。从机理上讲,SETD7在K5和K300位点甲基化TAF7,导致TAF7去泛素化和稳定化。此外,重新表达TAF7可以部分恢复SETD7敲除对ccRCC细胞增殖和迁移的抑制作用。此外,TAF7还能转录激活细胞周期蛋白A2(CCNA2)的表达。更重要的是,TAF7在K5和K300位点的甲基化表现出更高的CCNA2转录活性,从而促进了ccRCC的形成和进展。我们的研究结果揭示了SETD7介导的TAF7甲基化在ccRCC进展过程中调控CCNA2转录激活的独特机制,并为靶向SETD7-TAF7-CCNA2轴成员开发有效的治疗策略提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SETD7 Promotes Cell Proliferation and Migration via Methylation-mediated TAF7 in Clear Cell Renal Cell Carcinoma.

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信