{"title":"TRIB3 在癌症中的多种功能及其作为治疗靶点的潜力。","authors":"Shiying Lei, Jiajun Sun, Yifang Xie, Xiaojuan Xiao, Xiaofeng He, Sheng Lin, Huifang Zhang, Zineng Huang, Haiqin Wang, Xusheng Wu, Hongling Peng, Jing Liu","doi":"10.1093/carcin/bgae042","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target.\",\"authors\":\"Shiying Lei, Jiajun Sun, Yifang Xie, Xiaojuan Xiao, Xiaofeng He, Sheng Lin, Huifang Zhang, Zineng Huang, Haiqin Wang, Xusheng Wu, Hongling Peng, Jing Liu\",\"doi\":\"10.1093/carcin/bgae042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.</p>\",\"PeriodicalId\":9446,\"journal\":{\"name\":\"Carcinogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/carcin/bgae042\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae042","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target.
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).