分析要求在时间窗口内生成状态的量子协议的工具

Bethany Davies;Thomas Beauchamp;Gayane Vardoyan;Stephanie Wehner
{"title":"分析要求在时间窗口内生成状态的量子协议的工具","authors":"Bethany Davies;Thomas Beauchamp;Gayane Vardoyan;Stephanie Wehner","doi":"10.1109/TQE.2024.3358674","DOIUrl":null,"url":null,"abstract":"Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after \n<inline-formula><tex-math>$w$</tex-math></inline-formula>\n time steps. Let \n<inline-formula><tex-math>$s$</tex-math></inline-formula>\n be the number of desired resource states required by a protocol. We characterize the probability distribution \n<inline-formula><tex-math>$X_{(w,s)}$</tex-math></inline-formula>\n of the ages of the quantum resource states, once \n<inline-formula><tex-math>$s$</tex-math></inline-formula>\n states have been generated in a window \n<inline-formula><tex-math>$w$</tex-math></inline-formula>\n. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the \n<inline-formula><tex-math>$s$</tex-math></inline-formula>\n quantum resources. We also give exact solutions for the first and second moments of the waiting time \n<inline-formula><tex-math>$\\tau _{(w,s)}$</tex-math></inline-formula>\n until \n<inline-formula><tex-math>$s$</tex-math></inline-formula>\n resources are produced within a window \n<inline-formula><tex-math>$w$</tex-math></inline-formula>\n, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time \n<inline-formula><tex-math>$\\mathbb {E}(\\tau _{(w,s)})$</tex-math></inline-formula>\n and the distribution \n<inline-formula><tex-math>$X_{(w,s)}$</tex-math></inline-formula>\n, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer \n<inline-formula><tex-math>$w$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n to optimize the rate of successful protocol execution.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10417724","citationCount":"0","resultStr":"{\"title\":\"Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window\",\"authors\":\"Bethany Davies;Thomas Beauchamp;Gayane Vardoyan;Stephanie Wehner\",\"doi\":\"10.1109/TQE.2024.3358674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability \\n<inline-formula><tex-math>$p$</tex-math></inline-formula>\\n in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after \\n<inline-formula><tex-math>$w$</tex-math></inline-formula>\\n time steps. Let \\n<inline-formula><tex-math>$s$</tex-math></inline-formula>\\n be the number of desired resource states required by a protocol. We characterize the probability distribution \\n<inline-formula><tex-math>$X_{(w,s)}$</tex-math></inline-formula>\\n of the ages of the quantum resource states, once \\n<inline-formula><tex-math>$s$</tex-math></inline-formula>\\n states have been generated in a window \\n<inline-formula><tex-math>$w$</tex-math></inline-formula>\\n. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the \\n<inline-formula><tex-math>$s$</tex-math></inline-formula>\\n quantum resources. We also give exact solutions for the first and second moments of the waiting time \\n<inline-formula><tex-math>$\\\\tau _{(w,s)}$</tex-math></inline-formula>\\n until \\n<inline-formula><tex-math>$s$</tex-math></inline-formula>\\n resources are produced within a window \\n<inline-formula><tex-math>$w$</tex-math></inline-formula>\\n, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time \\n<inline-formula><tex-math>$\\\\mathbb {E}(\\\\tau _{(w,s)})$</tex-math></inline-formula>\\n and the distribution \\n<inline-formula><tex-math>$X_{(w,s)}$</tex-math></inline-formula>\\n, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer \\n<inline-formula><tex-math>$w$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$p$</tex-math></inline-formula>\\n to optimize the rate of successful protocol execution.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10417724\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10417724/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10417724/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子协议通常需要一定数量的量子资源状态同时可用。量子网络协议就是一类重要的例子,它需要一定数量的纠缠对。在这里,我们考虑这样一种情况:一个进程在每个时间步以一定的概率 $p$ 生成一个量子资源状态,并将其存储在一个受时间相关噪声影响的量子存储器中。为了保持应用的足够质量,每个资源状态都会在 $w$ 时间步后从存储器中丢弃。让 $s$ 成为协议所需的资源状态数量。一旦在 $w$ 窗口中生成了 $s$ 状态,我们将描述量子资源状态年龄的概率分布 $X_{(w,s)}$。结合随时间变化的噪声模型,了解了这种分布,就能计算出 $s$ 量子资源的保真度统计。我们还给出了等待时间 $\tau _{(w,s)}$ 的第一矩和第二矩的精确解,直到 $s$ 资源在 $w$ 窗口内产生,这提供了协议速率的信息。由于很难获得描述预期等待时间 $\mathbb {E}(\tau _{(w,s)})$ 和分布 $X_{(w,s)}$ 的统计量的一般闭式表达式,我们提出了两个新结果,它们有助于在某些参数条件下计算这些统计量。本研究提出的方法可用于分析和优化量子协议的执行。具体来说,我们以一个盲量子计算协议为例,说明了如何利用这些方法来推断 $w$ 和 $p$,从而优化协议的成功执行率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability $p$ in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after $w$ time steps. Let $s$ be the number of desired resource states required by a protocol. We characterize the probability distribution $X_{(w,s)}$ of the ages of the quantum resource states, once $s$ states have been generated in a window $w$ . Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the $s$ quantum resources. We also give exact solutions for the first and second moments of the waiting time $\tau _{(w,s)}$ until $s$ resources are produced within a window $w$ , which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time $\mathbb {E}(\tau _{(w,s)})$ and the distribution $X_{(w,s)}$ , we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer $w$ and $p$ to optimize the rate of successful protocol execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信