新陈代谢规模的大小很重要:ATP 合成的热力学效率的关键作用及其对不同哺乳动物线粒体 H+ 泄漏的依赖性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sunil Nath
{"title":"新陈代谢规模的大小很重要:ATP 合成的热力学效率的关键作用及其对不同哺乳动物线粒体 H+ 泄漏的依赖性","authors":"Sunil Nath","doi":"10.1016/j.biosystems.2024.105255","DOIUrl":null,"url":null,"abstract":"<div><p>In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology—that of metabolic scaling as a function of body mass <em>across</em> species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship <span><math><mrow><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><msup><mi>M</mi><mrow><msup><mi>b</mi><mo>′</mo></msup><mo>+</mo><mi>b</mi></mrow></msup></mrow></math></span> is composed of two parts, one emerging from the relative intraspecific <em>constancy</em> of the slope (<span><math><mrow><mi>b</mi></mrow></math></span>), and the other (<span><math><mrow><msup><mi>b</mi><mo>′</mo></msup></mrow></math></span>) arising from the interspecific <em>variation</em> of the mass coefficient, <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><msup><mi>M</mi><mn>0.10</mn></msup></mrow></math></span>, and a universal value of <span><math><mrow><msub><mi>P</mi><mn>0</mn></msub><mo>=</mo><mn>3.23</mn></mrow></math></span> watts, <span><math><mrow><mi>W</mi></mrow></math></span> is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a <em>molecular-level</em> understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis <em>η</em>, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling <span><math><mrow><mi>q</mi></mrow></math></span>, the operative <span><math><mrow><mi>P</mi><mo>/</mo><mi>O</mi></mrow></math></span> ratio, and the metabolic efficiency of ATP synthesis <em>η</em> are quantitatively evaluated for mammals from rat to cattle. Increases in <em>η</em> (by <span><math><mrow><mo>∼</mo><mn>15</mn><mo>%</mo></mrow></math></span>) over a <span><math><mrow><mn>2000</mn><mo>−</mo></mrow></math></span>fold body size range from rat to cattle, primarily arising from an <span><math><mrow><mo>∼</mo><mn>3</mn><mo>−</mo></mrow></math></span>fold decrease in the mitochondrial <span><math><mrow><msup><mi>H</mi><mo>+</mo></msup></mrow></math></span> leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size matters in metabolic scaling: Critical role of the thermodynamic efficiency of ATP synthesis and its dependence on mitochondrial H+ leak across mammalian species\",\"authors\":\"Sunil Nath\",\"doi\":\"10.1016/j.biosystems.2024.105255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology—that of metabolic scaling as a function of body mass <em>across</em> species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship <span><math><mrow><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><msup><mi>M</mi><mrow><msup><mi>b</mi><mo>′</mo></msup><mo>+</mo><mi>b</mi></mrow></msup></mrow></math></span> is composed of two parts, one emerging from the relative intraspecific <em>constancy</em> of the slope (<span><math><mrow><mi>b</mi></mrow></math></span>), and the other (<span><math><mrow><msup><mi>b</mi><mo>′</mo></msup></mrow></math></span>) arising from the interspecific <em>variation</em> of the mass coefficient, <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><msup><mi>M</mi><mn>0.10</mn></msup></mrow></math></span>, and a universal value of <span><math><mrow><msub><mi>P</mi><mn>0</mn></msub><mo>=</mo><mn>3.23</mn></mrow></math></span> watts, <span><math><mrow><mi>W</mi></mrow></math></span> is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a <em>molecular-level</em> understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis <em>η</em>, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling <span><math><mrow><mi>q</mi></mrow></math></span>, the operative <span><math><mrow><mi>P</mi><mo>/</mo><mi>O</mi></mrow></math></span> ratio, and the metabolic efficiency of ATP synthesis <em>η</em> are quantitatively evaluated for mammals from rat to cattle. Increases in <em>η</em> (by <span><math><mrow><mo>∼</mo><mn>15</mn><mo>%</mo></mrow></math></span>) over a <span><math><mrow><mn>2000</mn><mo>−</mo></mrow></math></span>fold body size range from rat to cattle, primarily arising from an <span><math><mrow><mo>∼</mo><mn>3</mn><mo>−</mo></mrow></math></span>fold decrease in the mitochondrial <span><math><mrow><msup><mi>H</mi><mo>+</mo></msup></mrow></math></span> leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724001400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这三部曲的最后一篇文章中,前两篇论文中提出的统一的 ATP 合成生物热动力学理论被应用于比较生理学、生物化学和生态学中的一个主要问题--即作为体重函数的跨物种新陈代谢比例。论文明确区分了能量代谢中的种内关系和种间关系,澄清了自近一个世纪前克莱伯首次提出小鼠对大象规则以来一直存在的混淆。研究表明,在异速关系 P=P0Mb′+b 中,基础/标准代谢率的总体质量指数由两部分组成,一部分来自斜率(b)在种内的相对恒定性,另一部分(b′)来自质量系数 a(M)随体型的种间变化。定量分析显示,种间质量系数 a(M)=P0M0.10 和 P0=3.23 瓦特的普遍值 W 是由从小鼠到牛的哺乳动物的经验数据得出的。上述关系只有在生物进化的背景下才能被理解,并为科普规则提供了生理学解释。该分析还有助于从根本上理解生物学和生态学中的异速关系是如何产生变异性和比例指数多样性的。接下来,通过考虑 ATP 合成的热力学效率 η,并将线粒体质子泄漏作为生物系统中基础代谢率的主要决定因素,可以从分子层面理解哺乳动物物种间新陈代谢的比例关系。通过求解生物热动力学 ATP 理论的数学方程,得到了一个迭代解,并定量评估了从大鼠到牛等哺乳动物的关键热力学参数,如耦合度 q、工作 P/O 比率和 ATP 合成代谢效率 η。从大鼠到牛,在 2000 倍的体型范围内,η 的增加(增加 ∼15%)主要源于线粒体 H+ 泄漏率降低了 ∼3 倍,统一 ATP 理论对此进行了量化。详细讨论了解释基础代谢的生物化学和机理后果,以及由此产生的各种分子影响。这些结果被扩展到最大代谢率,并作为一般 ATP 理论的极限情况进行数学解释。指出了分析的局限性。总之,基于 ATP 合成的统一生物热动力学理论的全面定量分析,解决了生物学、生理学和生态学中关于能量代谢与体型比例的核心问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size matters in metabolic scaling: Critical role of the thermodynamic efficiency of ATP synthesis and its dependence on mitochondrial H+ leak across mammalian species

In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology—that of metabolic scaling as a function of body mass across species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship P=P0Mb+b is composed of two parts, one emerging from the relative intraspecific constancy of the slope (b), and the other (b) arising from the interspecific variation of the mass coefficient, a(M) with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, a(M)=P0M0.10, and a universal value of P0=3.23 watts, W is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a molecular-level understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis η, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling q, the operative P/O ratio, and the metabolic efficiency of ATP synthesis η are quantitatively evaluated for mammals from rat to cattle. Increases in η (by 15%) over a 2000fold body size range from rat to cattle, primarily arising from an 3fold decrease in the mitochondrial H+ leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信