包含片断空间风险函数的疾病传播个体水平模型

IF 1.7 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Chinmoy Roy Rahul , Rob Deardon
{"title":"包含片断空间风险函数的疾病传播个体水平模型","authors":"Chinmoy Roy Rahul ,&nbsp;Rob Deardon","doi":"10.1016/j.sste.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information.</p><p>Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk.</p><p>We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them to produce results in line with, or superior to, parametric spatial ILMs. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100664"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual-level models of disease transmission incorporating piecewise spatial risk functions\",\"authors\":\"Chinmoy Roy Rahul ,&nbsp;Rob Deardon\",\"doi\":\"10.1016/j.sste.2024.100664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information.</p><p>Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk.</p><p>We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them to produce results in line with, or superior to, parametric spatial ILMs. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"50 \",\"pages\":\"Article 100664\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

建立流行病模型对于了解疾病的出现、传播、影响和控制至关重要。考虑到人口异质性的空间个体水平模型(ILMs)是一种有用的工具,能考虑到地点、疫苗接种状况和遗传信息等因素。在此,我们提出了一类非参数空间疾病传播模型,在贝叶斯马尔科夫链蒙特卡洛(MCMC)框架内进行拟合,从而在估计空间距离和感染风险的影响时允许更灵活的假设。虽然这两种形式相对简单,但我们发现它们产生的结果与参数空间 ILM 一致,甚至优于参数空间 ILM。我们使用模拟数据(包括在模型指定错误的情况下)检验了这些模型的性能,然后将其应用于英国 2001 年口蹄疫的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individual-level models of disease transmission incorporating piecewise spatial risk functions

Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information.

Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk.

We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them to produce results in line with, or superior to, parametric spatial ILMs. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信