利用贝叶斯广义共享成分模型创建影响澳大利亚癌症行为的地区指数

IF 3.8 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
James Hogg , Susanna Cramb , Jessica Cameron , Peter Baade , Kerrie Mengersen
{"title":"利用贝叶斯广义共享成分模型创建影响澳大利亚癌症行为的地区指数","authors":"James Hogg ,&nbsp;Susanna Cramb ,&nbsp;Jessica Cameron ,&nbsp;Peter Baade ,&nbsp;Kerrie Mengersen","doi":"10.1016/j.healthplace.2024.103295","DOIUrl":null,"url":null,"abstract":"<div><p>This study develops a model-based index approach called the Generalised Shared Component Model (GSCM) by drawing on the large field of factor models. The proposed fully Bayesian approach accommodates heteroscedastic model error, multiple shared factors and flexible spatial priors. Moreover, unlike previous index approaches, our model provides indices with uncertainty. Focusing on unhealthy behaviors that increase the risk of cancer, the proposed GSCM is used to develop the Area Indices of Behaviors Impacting Cancer product — representing the first area level cancer risk factor index in Australia. This advancement aids in identifying communities with elevated cancer risk, facilitating targeted health interventions.</p></div>","PeriodicalId":49302,"journal":{"name":"Health & Place","volume":"89 ","pages":"Article 103295"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1353829224001230/pdfft?md5=a63d0027332b84f96802a584cc14140b&pid=1-s2.0-S1353829224001230-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Creating area level indices of behaviours impacting cancer in Australia with a Bayesian generalised shared component model\",\"authors\":\"James Hogg ,&nbsp;Susanna Cramb ,&nbsp;Jessica Cameron ,&nbsp;Peter Baade ,&nbsp;Kerrie Mengersen\",\"doi\":\"10.1016/j.healthplace.2024.103295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study develops a model-based index approach called the Generalised Shared Component Model (GSCM) by drawing on the large field of factor models. The proposed fully Bayesian approach accommodates heteroscedastic model error, multiple shared factors and flexible spatial priors. Moreover, unlike previous index approaches, our model provides indices with uncertainty. Focusing on unhealthy behaviors that increase the risk of cancer, the proposed GSCM is used to develop the Area Indices of Behaviors Impacting Cancer product — representing the first area level cancer risk factor index in Australia. This advancement aids in identifying communities with elevated cancer risk, facilitating targeted health interventions.</p></div>\",\"PeriodicalId\":49302,\"journal\":{\"name\":\"Health & Place\",\"volume\":\"89 \",\"pages\":\"Article 103295\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1353829224001230/pdfft?md5=a63d0027332b84f96802a584cc14140b&pid=1-s2.0-S1353829224001230-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health & Place\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1353829224001230\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & Place","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353829224001230","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

本研究借鉴了大量因子模型,开发了一种基于模型的指数方法,称为广义共享成分模型(GSCM)。所提出的完全贝叶斯方法可容纳异方差模型误差、多个共享因子和灵活的空间先验。此外,与以往的指数方法不同,我们的模型提供了具有不确定性的指数。以增加癌症风险的不健康行为为重点,所提出的 GSCM 被用于开发影响癌症的行为地区指数产品,这是澳大利亚首个地区级癌症风险因素指数。这一进步有助于确定癌症风险较高的社区,促进有针对性的健康干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating area level indices of behaviours impacting cancer in Australia with a Bayesian generalised shared component model

This study develops a model-based index approach called the Generalised Shared Component Model (GSCM) by drawing on the large field of factor models. The proposed fully Bayesian approach accommodates heteroscedastic model error, multiple shared factors and flexible spatial priors. Moreover, unlike previous index approaches, our model provides indices with uncertainty. Focusing on unhealthy behaviors that increase the risk of cancer, the proposed GSCM is used to develop the Area Indices of Behaviors Impacting Cancer product — representing the first area level cancer risk factor index in Australia. This advancement aids in identifying communities with elevated cancer risk, facilitating targeted health interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health & Place
Health & Place PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
7.70
自引率
6.20%
发文量
176
审稿时长
29 days
期刊介绍: he journal is an interdisciplinary journal dedicated to the study of all aspects of health and health care in which place or location matters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信