{"title":"基于大语言模型的乳腺癌病理报告零点推理与特定任务监督分类的比较研究。","authors":"Madhumita Sushil, Travis Zack, Divneet Mandair, Zhiwei Zheng, Ahmed Wali, Yan-Ning Yu, Yuwei Quan, Dmytro Lituiev, Atul J Butte","doi":"10.1093/jamia/ocae146","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Although supervised machine learning is popular for information extraction from clinical notes, creating large annotated datasets requires extensive domain expertise and is time-consuming. Meanwhile, large language models (LLMs) have demonstrated promising transfer learning capability. In this study, we explored whether recent LLMs could reduce the need for large-scale data annotations.</p><p><strong>Materials and methods: </strong>We curated a dataset of 769 breast cancer pathology reports, manually labeled with 12 categories, to compare zero-shot classification capability of the following LLMs: GPT-4, GPT-3.5, Starling, and ClinicalCamel, with task-specific supervised classification performance of 3 models: random forests, long short-term memory networks with attention (LSTM-Att), and the UCSF-BERT model.</p><p><strong>Results: </strong>Across all 12 tasks, the GPT-4 model performed either significantly better than or as well as the best supervised model, LSTM-Att (average macro F1-score of 0.86 vs 0.75), with advantage on tasks with high label imbalance. Other LLMs demonstrated poor performance. Frequent GPT-4 error categories included incorrect inferences from multiple samples and from history, and complex task design, and several LSTM-Att errors were related to poor generalization to the test set.</p><p><strong>Discussion: </strong>On tasks where large annotated datasets cannot be easily collected, LLMs can reduce the burden of data labeling. However, if the use of LLMs is prohibitive, the use of simpler models with large annotated datasets can provide comparable results.</p><p><strong>Conclusions: </strong>GPT-4 demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for large annotated datasets. This may increase the utilization of NLP-based variables and outcomes in clinical studies.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413420/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative study of large language model-based zero-shot inference and task-specific supervised classification of breast cancer pathology reports.\",\"authors\":\"Madhumita Sushil, Travis Zack, Divneet Mandair, Zhiwei Zheng, Ahmed Wali, Yan-Ning Yu, Yuwei Quan, Dmytro Lituiev, Atul J Butte\",\"doi\":\"10.1093/jamia/ocae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Although supervised machine learning is popular for information extraction from clinical notes, creating large annotated datasets requires extensive domain expertise and is time-consuming. Meanwhile, large language models (LLMs) have demonstrated promising transfer learning capability. In this study, we explored whether recent LLMs could reduce the need for large-scale data annotations.</p><p><strong>Materials and methods: </strong>We curated a dataset of 769 breast cancer pathology reports, manually labeled with 12 categories, to compare zero-shot classification capability of the following LLMs: GPT-4, GPT-3.5, Starling, and ClinicalCamel, with task-specific supervised classification performance of 3 models: random forests, long short-term memory networks with attention (LSTM-Att), and the UCSF-BERT model.</p><p><strong>Results: </strong>Across all 12 tasks, the GPT-4 model performed either significantly better than or as well as the best supervised model, LSTM-Att (average macro F1-score of 0.86 vs 0.75), with advantage on tasks with high label imbalance. Other LLMs demonstrated poor performance. Frequent GPT-4 error categories included incorrect inferences from multiple samples and from history, and complex task design, and several LSTM-Att errors were related to poor generalization to the test set.</p><p><strong>Discussion: </strong>On tasks where large annotated datasets cannot be easily collected, LLMs can reduce the burden of data labeling. However, if the use of LLMs is prohibitive, the use of simpler models with large annotated datasets can provide comparable results.</p><p><strong>Conclusions: </strong>GPT-4 demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for large annotated datasets. This may increase the utilization of NLP-based variables and outcomes in clinical studies.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae146\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A comparative study of large language model-based zero-shot inference and task-specific supervised classification of breast cancer pathology reports.
Objective: Although supervised machine learning is popular for information extraction from clinical notes, creating large annotated datasets requires extensive domain expertise and is time-consuming. Meanwhile, large language models (LLMs) have demonstrated promising transfer learning capability. In this study, we explored whether recent LLMs could reduce the need for large-scale data annotations.
Materials and methods: We curated a dataset of 769 breast cancer pathology reports, manually labeled with 12 categories, to compare zero-shot classification capability of the following LLMs: GPT-4, GPT-3.5, Starling, and ClinicalCamel, with task-specific supervised classification performance of 3 models: random forests, long short-term memory networks with attention (LSTM-Att), and the UCSF-BERT model.
Results: Across all 12 tasks, the GPT-4 model performed either significantly better than or as well as the best supervised model, LSTM-Att (average macro F1-score of 0.86 vs 0.75), with advantage on tasks with high label imbalance. Other LLMs demonstrated poor performance. Frequent GPT-4 error categories included incorrect inferences from multiple samples and from history, and complex task design, and several LSTM-Att errors were related to poor generalization to the test set.
Discussion: On tasks where large annotated datasets cannot be easily collected, LLMs can reduce the burden of data labeling. However, if the use of LLMs is prohibitive, the use of simpler models with large annotated datasets can provide comparable results.
Conclusions: GPT-4 demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for large annotated datasets. This may increase the utilization of NLP-based variables and outcomes in clinical studies.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.