Wenting Zhao;Gongping Xu;Long Wang;Zhen Cui;Tong Zhang;Jian Yang
{"title":"用于蛋白质-蛋白质结合位点预测的内部图表示学习。","authors":"Wenting Zhao;Gongping Xu;Long Wang;Zhen Cui;Tong Zhang;Jian Yang","doi":"10.1109/TCBB.2024.3416341","DOIUrl":null,"url":null,"abstract":"Graph neural networks have drawn increasing attention and achieved remarkable progress recently due to their potential applications for a large amount of irregular data. It is a natural way to represent protein as a graph. In this work, we focus on protein-protein binding sites prediction between the ligand and receptor proteins. Previous work just simply adopts graph convolution to learn residue representations of ligand and receptor proteins, then concatenates them and feeds the concatenated representation into a fully connected layer to make predictions, losing much of the information contained in complexes and failing to obtain an optimal prediction. In this paper, we present Intra-Inter Graph Representation Learning for protein-protein binding sites prediction (IIGRL). Specifically, for intra-graph learning, we maximize the mutual information between local node representation and global graph summary to encourage node representation to embody the global information of protein graph. Then we explore fusing two separate ligand and receptor graphs as a whole graph and learning affinities between their residues/nodes to propagate information to each other, which could effectively capture inter-protein information and further enhance the discrimination of residue pairs. Extensive experiments on multiple benchmarks demonstrate that the proposed IIGRL model outperforms state-of-the-art methods.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"1685-1696"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intra-Inter Graph Representation Learning for Protein-Protein Binding Sites Prediction\",\"authors\":\"Wenting Zhao;Gongping Xu;Long Wang;Zhen Cui;Tong Zhang;Jian Yang\",\"doi\":\"10.1109/TCBB.2024.3416341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks have drawn increasing attention and achieved remarkable progress recently due to their potential applications for a large amount of irregular data. It is a natural way to represent protein as a graph. In this work, we focus on protein-protein binding sites prediction between the ligand and receptor proteins. Previous work just simply adopts graph convolution to learn residue representations of ligand and receptor proteins, then concatenates them and feeds the concatenated representation into a fully connected layer to make predictions, losing much of the information contained in complexes and failing to obtain an optimal prediction. In this paper, we present Intra-Inter Graph Representation Learning for protein-protein binding sites prediction (IIGRL). Specifically, for intra-graph learning, we maximize the mutual information between local node representation and global graph summary to encourage node representation to embody the global information of protein graph. Then we explore fusing two separate ligand and receptor graphs as a whole graph and learning affinities between their residues/nodes to propagate information to each other, which could effectively capture inter-protein information and further enhance the discrimination of residue pairs. Extensive experiments on multiple benchmarks demonstrate that the proposed IIGRL model outperforms state-of-the-art methods.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"1685-1696\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10564575/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10564575/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Intra-Inter Graph Representation Learning for Protein-Protein Binding Sites Prediction
Graph neural networks have drawn increasing attention and achieved remarkable progress recently due to their potential applications for a large amount of irregular data. It is a natural way to represent protein as a graph. In this work, we focus on protein-protein binding sites prediction between the ligand and receptor proteins. Previous work just simply adopts graph convolution to learn residue representations of ligand and receptor proteins, then concatenates them and feeds the concatenated representation into a fully connected layer to make predictions, losing much of the information contained in complexes and failing to obtain an optimal prediction. In this paper, we present Intra-Inter Graph Representation Learning for protein-protein binding sites prediction (IIGRL). Specifically, for intra-graph learning, we maximize the mutual information between local node representation and global graph summary to encourage node representation to embody the global information of protein graph. Then we explore fusing two separate ligand and receptor graphs as a whole graph and learning affinities between their residues/nodes to propagate information to each other, which could effectively capture inter-protein information and further enhance the discrimination of residue pairs. Extensive experiments on multiple benchmarks demonstrate that the proposed IIGRL model outperforms state-of-the-art methods.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system