计算单细胞和细胞外法医 DNA 的综合证据权重。

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Desmond S. Lun;Catherine M. Grgicak
{"title":"计算单细胞和细胞外法医 DNA 的综合证据权重。","authors":"Desmond S. Lun;Catherine M. Grgicak","doi":"10.1109/TCBB.2024.3416877","DOIUrl":null,"url":null,"abstract":"The weight of DNA evidence for forensic applications is typically assessed through the calculation of the likelihood ratio (LR). In the standard workflow, DNA is extracted from a collection of cells where the cells of an unknown number of donors are mixed. The DNA is then genotyped, and the LR is calculated through well-established methods. Recently, a method for calculating the LR from single-cell data has been presented. Rather than extracting the DNA while the cells are still mixed, single-cell data is procured by first isolating each cell. Extraction and fragment analysis of relevant forensic loci follows such that individual cells are genotyped. This workflow leads to significantly stronger weights of evidence, but it does not account for extracellular DNA that could also be present in the sample. In this paper, we present a method for calculation of an LR that combines single-cell and extracellular data. We demonstrate the calculation on example data and show that the combined LR can lead to stronger conclusions than would be obtained from calculating LRs on the single-cell and extracellular DNA separately.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2587-2591"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the Weight of Evidence for Combined Single-Cell and Extracellular Forensic DNA\",\"authors\":\"Desmond S. Lun;Catherine M. Grgicak\",\"doi\":\"10.1109/TCBB.2024.3416877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weight of DNA evidence for forensic applications is typically assessed through the calculation of the likelihood ratio (LR). In the standard workflow, DNA is extracted from a collection of cells where the cells of an unknown number of donors are mixed. The DNA is then genotyped, and the LR is calculated through well-established methods. Recently, a method for calculating the LR from single-cell data has been presented. Rather than extracting the DNA while the cells are still mixed, single-cell data is procured by first isolating each cell. Extraction and fragment analysis of relevant forensic loci follows such that individual cells are genotyped. This workflow leads to significantly stronger weights of evidence, but it does not account for extracellular DNA that could also be present in the sample. In this paper, we present a method for calculation of an LR that combines single-cell and extracellular data. We demonstrate the calculation on example data and show that the combined LR can lead to stronger conclusions than would be obtained from calculating LRs on the single-cell and extracellular DNA separately.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2587-2591\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10564113/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10564113/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

法医应用中 DNA 证据的权重通常通过计算似然比 (LR) 来评估。在标准工作流程中,DNA 从细胞集合中提取,其中混合了未知数量供体的细胞。然后对 DNA 进行基因分型,并通过成熟的方法计算 LR。最近,有人提出了一种从单细胞数据计算 LR 的方法。这种方法不是在细胞仍处于混合状态时提取 DNA,而是先分离每个细胞,然后获取单细胞数据。随后对相关法医位点进行提取和片段分析,从而对单个细胞进行基因分型。这种工作流程可大大提高证据的权重,但却无法考虑样本中可能存在的细胞外 DNA。本文介绍了一种结合单细胞和细胞外数据计算 LR 的方法。我们在实例数据上演示了计算方法,结果表明,与分别计算单细胞和细胞外 DNA 的 LR 相比,综合 LR 能得出更有力的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of the Weight of Evidence for Combined Single-Cell and Extracellular Forensic DNA
The weight of DNA evidence for forensic applications is typically assessed through the calculation of the likelihood ratio (LR). In the standard workflow, DNA is extracted from a collection of cells where the cells of an unknown number of donors are mixed. The DNA is then genotyped, and the LR is calculated through well-established methods. Recently, a method for calculating the LR from single-cell data has been presented. Rather than extracting the DNA while the cells are still mixed, single-cell data is procured by first isolating each cell. Extraction and fragment analysis of relevant forensic loci follows such that individual cells are genotyped. This workflow leads to significantly stronger weights of evidence, but it does not account for extracellular DNA that could also be present in the sample. In this paper, we present a method for calculation of an LR that combines single-cell and extracellular data. We demonstrate the calculation on example data and show that the combined LR can lead to stronger conclusions than would be obtained from calculating LRs on the single-cell and extracellular DNA separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信