Jonas Bömer, Felix Esser, Elias Marks, Radu Alexandru Rosu, Sven Behnke, Lasse Klingbeil, Heiner Kuhlmann, Cyrill Stachniss, Anne-Katrin Mahlein, Stefan Paulus
{"title":"用于准确可靠的三维植物表型的三维打印植物模型。","authors":"Jonas Bömer, Felix Esser, Elias Marks, Radu Alexandru Rosu, Sven Behnke, Lasse Klingbeil, Heiner Kuhlmann, Cyrill Stachniss, Anne-Katrin Mahlein, Stefan Paulus","doi":"10.1093/gigascience/giae035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial for advancing plant breeding and improving crop production. Traditionally, reference data in plant phenotyping rely on invasive methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be referenced by manual measurements. This work focuses on evaluating a 3D printed sugar beet plant model as a referencing tool.</p><p><strong>Results: </strong>Fused deposition modeling has turned out to be a suitable 3D printing technique for creating reference objects in 3D plant phenotyping. Production deviations of the created reference model were in a low and acceptable range. We were able to achieve deviations ranging from -10 mm to +5 mm. In parallel, we demonstrated a high-dimensional stability of the reference model, reaching only ±4 mm deformation over the course of 1 year. Detailed print files, assembly descriptions, and benchmark parameters are provided, facilitating replication and benefiting the research community.</p><p><strong>Conclusion: </strong>Consumer-grade 3D printing was utilized to create a stable and reproducible 3D reference model of a sugar beet plant, addressing challenges in referencing morphological parameters in 3D plant phenotyping. The reference model is applicable in 3 demonstrated use cases: evaluating and comparing 3D sensor systems, investigating the potential accuracy of parameter extraction algorithms, and continuously monitoring these algorithms in practical experiments in greenhouse and field experiments. Using this approach, it is possible to monitor the extraction of a nonverifiable parameter and create reference data. The process serves as a model for developing reference models for other agricultural crops.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186670/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 3D printed plant model for accurate and reliable 3D plant phenotyping.\",\"authors\":\"Jonas Bömer, Felix Esser, Elias Marks, Radu Alexandru Rosu, Sven Behnke, Lasse Klingbeil, Heiner Kuhlmann, Cyrill Stachniss, Anne-Katrin Mahlein, Stefan Paulus\",\"doi\":\"10.1093/gigascience/giae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial for advancing plant breeding and improving crop production. Traditionally, reference data in plant phenotyping rely on invasive methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be referenced by manual measurements. This work focuses on evaluating a 3D printed sugar beet plant model as a referencing tool.</p><p><strong>Results: </strong>Fused deposition modeling has turned out to be a suitable 3D printing technique for creating reference objects in 3D plant phenotyping. Production deviations of the created reference model were in a low and acceptable range. We were able to achieve deviations ranging from -10 mm to +5 mm. In parallel, we demonstrated a high-dimensional stability of the reference model, reaching only ±4 mm deformation over the course of 1 year. Detailed print files, assembly descriptions, and benchmark parameters are provided, facilitating replication and benefiting the research community.</p><p><strong>Conclusion: </strong>Consumer-grade 3D printing was utilized to create a stable and reproducible 3D reference model of a sugar beet plant, addressing challenges in referencing morphological parameters in 3D plant phenotyping. The reference model is applicable in 3 demonstrated use cases: evaluating and comparing 3D sensor systems, investigating the potential accuracy of parameter extraction algorithms, and continuously monitoring these algorithms in practical experiments in greenhouse and field experiments. Using this approach, it is possible to monitor the extraction of a nonverifiable parameter and create reference data. The process serves as a model for developing reference models for other agricultural crops.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae035\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A 3D printed plant model for accurate and reliable 3D plant phenotyping.
Background: This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial for advancing plant breeding and improving crop production. Traditionally, reference data in plant phenotyping rely on invasive methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be referenced by manual measurements. This work focuses on evaluating a 3D printed sugar beet plant model as a referencing tool.
Results: Fused deposition modeling has turned out to be a suitable 3D printing technique for creating reference objects in 3D plant phenotyping. Production deviations of the created reference model were in a low and acceptable range. We were able to achieve deviations ranging from -10 mm to +5 mm. In parallel, we demonstrated a high-dimensional stability of the reference model, reaching only ±4 mm deformation over the course of 1 year. Detailed print files, assembly descriptions, and benchmark parameters are provided, facilitating replication and benefiting the research community.
Conclusion: Consumer-grade 3D printing was utilized to create a stable and reproducible 3D reference model of a sugar beet plant, addressing challenges in referencing morphological parameters in 3D plant phenotyping. The reference model is applicable in 3 demonstrated use cases: evaluating and comparing 3D sensor systems, investigating the potential accuracy of parameter extraction algorithms, and continuously monitoring these algorithms in practical experiments in greenhouse and field experiments. Using this approach, it is possible to monitor the extraction of a nonverifiable parameter and create reference data. The process serves as a model for developing reference models for other agricultural crops.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.