Richard H. Chapple, Xueying Liu, Sivaraman Natarajan, Margaret I. M. Alexander, Yuna Kim, Anand G. Patel, Christy W. LaFlamme, Min Pan, William C. Wright, Hyeong-Min Lee, Yinwen Zhang, Meifen Lu, Selene C. Koo, Courtney Long, John Harper, Chandra Savage, Melissa D. Johnson, Thomas Confer, Walter J. Akers, Michael A. Dyer, Heather Sheppard, John Easton, Paul Geeleher
{"title":"人类神经母细胞瘤肿瘤和临床前模型的综合单细胞 RNA-Seq 图谱揭示了不同的间充质样基因表达程序","authors":"Richard H. Chapple, Xueying Liu, Sivaraman Natarajan, Margaret I. M. Alexander, Yuna Kim, Anand G. Patel, Christy W. LaFlamme, Min Pan, William C. Wright, Hyeong-Min Lee, Yinwen Zhang, Meifen Lu, Selene C. Koo, Courtney Long, John Harper, Chandra Savage, Melissa D. Johnson, Thomas Confer, Walter J. Akers, Michael A. Dyer, Heather Sheppard, John Easton, Paul Geeleher","doi":"10.1186/s13059-024-03309-4","DOIUrl":null,"url":null,"abstract":"Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generate single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We develop an unsupervised machine learning approach (“automatic consensus nonnegative matrix factorization” (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirm a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly, however, this weak-mesenchymal-like program is maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 h, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated single-cell RNA-seq map of human neuroblastoma tumors and preclinical models uncovers divergent mesenchymal-like gene expression programs\",\"authors\":\"Richard H. Chapple, Xueying Liu, Sivaraman Natarajan, Margaret I. M. Alexander, Yuna Kim, Anand G. Patel, Christy W. LaFlamme, Min Pan, William C. Wright, Hyeong-Min Lee, Yinwen Zhang, Meifen Lu, Selene C. Koo, Courtney Long, John Harper, Chandra Savage, Melissa D. Johnson, Thomas Confer, Walter J. Akers, Michael A. Dyer, Heather Sheppard, John Easton, Paul Geeleher\",\"doi\":\"10.1186/s13059-024-03309-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generate single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We develop an unsupervised machine learning approach (“automatic consensus nonnegative matrix factorization” (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirm a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly, however, this weak-mesenchymal-like program is maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 h, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03309-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03309-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
An integrated single-cell RNA-seq map of human neuroblastoma tumors and preclinical models uncovers divergent mesenchymal-like gene expression programs
Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generate single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We develop an unsupervised machine learning approach (“automatic consensus nonnegative matrix factorization” (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirm a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly, however, this weak-mesenchymal-like program is maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 h, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.