通过多标签分类法识别欺诈性财务报表

Q1 Economics, Econometrics and Finance
Maria Tragouda, Michalis Doumpos, Constantin Zopounidis
{"title":"通过多标签分类法识别欺诈性财务报表","authors":"Maria Tragouda,&nbsp;Michalis Doumpos,&nbsp;Constantin Zopounidis","doi":"10.1002/isaf.1564","DOIUrl":null,"url":null,"abstract":"<p>Although the financial audit controls in companies have advanced over the years, the number of corporate fraud instances is growing, thus raising the need for investigating the factors that can be used as early warning signals and developing effective systems for identifying financial fraud. In this paper, financial statements from 133 Greek companies listed in the Athens Stock Exchange over the period 2014 to 2019 are investigated, based on the fraud diamond theory. Financial data and corporate governance variables are used as inputs to data mining techniques to develop models that can identify patterns of irregularities in a company's financial reports. To this end, popular machine learning classification algorithms are employed in a novel multi-label classification setting that not only identifies fraudulent cases but also considers the nature of the auditors' comments. The results indicate that the proposed multi-label approach provides enhanced results compared to binary classification algorithms, avoiding inconsistent outputs with respect to the existence of different forms of manipulation of financial statements.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1564","citationCount":"0","resultStr":"{\"title\":\"Identification of fraudulent financial statements through a multi-label classification approach\",\"authors\":\"Maria Tragouda,&nbsp;Michalis Doumpos,&nbsp;Constantin Zopounidis\",\"doi\":\"10.1002/isaf.1564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although the financial audit controls in companies have advanced over the years, the number of corporate fraud instances is growing, thus raising the need for investigating the factors that can be used as early warning signals and developing effective systems for identifying financial fraud. In this paper, financial statements from 133 Greek companies listed in the Athens Stock Exchange over the period 2014 to 2019 are investigated, based on the fraud diamond theory. Financial data and corporate governance variables are used as inputs to data mining techniques to develop models that can identify patterns of irregularities in a company's financial reports. To this end, popular machine learning classification algorithms are employed in a novel multi-label classification setting that not only identifies fraudulent cases but also considers the nature of the auditors' comments. The results indicate that the proposed multi-label approach provides enhanced results compared to binary classification algorithms, avoiding inconsistent outputs with respect to the existence of different forms of manipulation of financial statements.</p>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

尽管公司的财务审计控制在过去几年中取得了进步,但公司欺诈事件的数量却在不断增加,因此有必要调查可作为预警信号的因素,并开发有效的财务欺诈识别系统。本文以欺诈钻石理论为基础,调查了 133 家在雅典证券交易所上市的希腊公司在 2014 年至 2019 年期间的财务报表。财务数据和公司治理变量被用作数据挖掘技术的输入,以开发可识别公司财务报告中违规模式的模型。为此,在一个新颖的多标签分类环境中采用了流行的机器学习分类算法,该算法不仅能识别欺诈案例,还能考虑审计师意见的性质。结果表明,与二进制分类算法相比,所提出的多标签方法提供了更好的结果,避免了因存在不同形式的财务报表操纵而产生不一致的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of fraudulent financial statements through a multi-label classification approach

Identification of fraudulent financial statements through a multi-label classification approach

Although the financial audit controls in companies have advanced over the years, the number of corporate fraud instances is growing, thus raising the need for investigating the factors that can be used as early warning signals and developing effective systems for identifying financial fraud. In this paper, financial statements from 133 Greek companies listed in the Athens Stock Exchange over the period 2014 to 2019 are investigated, based on the fraud diamond theory. Financial data and corporate governance variables are used as inputs to data mining techniques to develop models that can identify patterns of irregularities in a company's financial reports. To this end, popular machine learning classification algorithms are employed in a novel multi-label classification setting that not only identifies fraudulent cases but also considers the nature of the auditors' comments. The results indicate that the proposed multi-label approach provides enhanced results compared to binary classification algorithms, avoiding inconsistent outputs with respect to the existence of different forms of manipulation of financial statements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信