Paul Joseph Namongo Soro , Juliette Lamarche , Sophie Viseur , Pascal Richard , Fateh Messaadi
{"title":"FracAbut:利用界面阻抗计算断裂地层的 python 工具箱","authors":"Paul Joseph Namongo Soro , Juliette Lamarche , Sophie Viseur , Pascal Richard , Fateh Messaadi","doi":"10.1016/j.cageo.2024.105656","DOIUrl":null,"url":null,"abstract":"<div><p>In Naturally Fractured Reservoirs (NFR) diffuse fractures arrangement results from mechanical stratigraphy and tectonic history during failure. Thus, modelling Discrete Fracture Network (DFN) requires to understand and to account for fracture relationships at bed-interface (abutment or crosscutting) in 3D through time (loading path). However, sampling fractures data meaningfully in subsurface has always been a challenge for geologist due to data scarcity.</p><p>To better understand and forecast fracture networks in stratified rocks, we study outcrops with a focus on geometric relationships between stratigraphic interfaces and fractures. This paper presents an original python toolbox called FracAbut. It is composed of 1 main and 2 auxiliary codes that quantify the geometric relation between fractures and stratigraphic interfaces from 1D (wells, scan-line) and 2D (digital image, photographs data). We calculate the Interface Impedance (<em>II</em>) that accounts for fracture abutment (crossing or not), persistence (single- or multi-bed) and propagation polarity (upward or downward). For each stratigraphic interface FracAbut provides information on fractures (type, number) and interface sensitivity (coupling strength).</p><p>First, we apply FracAbut on synthetic case studies, then, on naturally fractured and stratified carbonates in Berat, Albania. Using both 1D scan-line and 2D outcrop photograph, we show that i) a mechanical interface can have different coupling above and below based on propagation polarity, ii) FracAbut results can give useful insight on fracture transmissivity, iii) FracAbut is fast and efficient to quantify fracture patterns and classify mechanical interface impact; iv) they are no relation between bed thickness and fracture propagation.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"190 ","pages":"Article 105656"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FracAbut: A python toolbox for computing fracture stratigraphy using interface impedance\",\"authors\":\"Paul Joseph Namongo Soro , Juliette Lamarche , Sophie Viseur , Pascal Richard , Fateh Messaadi\",\"doi\":\"10.1016/j.cageo.2024.105656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Naturally Fractured Reservoirs (NFR) diffuse fractures arrangement results from mechanical stratigraphy and tectonic history during failure. Thus, modelling Discrete Fracture Network (DFN) requires to understand and to account for fracture relationships at bed-interface (abutment or crosscutting) in 3D through time (loading path). However, sampling fractures data meaningfully in subsurface has always been a challenge for geologist due to data scarcity.</p><p>To better understand and forecast fracture networks in stratified rocks, we study outcrops with a focus on geometric relationships between stratigraphic interfaces and fractures. This paper presents an original python toolbox called FracAbut. It is composed of 1 main and 2 auxiliary codes that quantify the geometric relation between fractures and stratigraphic interfaces from 1D (wells, scan-line) and 2D (digital image, photographs data). We calculate the Interface Impedance (<em>II</em>) that accounts for fracture abutment (crossing or not), persistence (single- or multi-bed) and propagation polarity (upward or downward). For each stratigraphic interface FracAbut provides information on fractures (type, number) and interface sensitivity (coupling strength).</p><p>First, we apply FracAbut on synthetic case studies, then, on naturally fractured and stratified carbonates in Berat, Albania. Using both 1D scan-line and 2D outcrop photograph, we show that i) a mechanical interface can have different coupling above and below based on propagation polarity, ii) FracAbut results can give useful insight on fracture transmissivity, iii) FracAbut is fast and efficient to quantify fracture patterns and classify mechanical interface impact; iv) they are no relation between bed thickness and fracture propagation.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"190 \",\"pages\":\"Article 105656\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001390\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001390","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
FracAbut: A python toolbox for computing fracture stratigraphy using interface impedance
In Naturally Fractured Reservoirs (NFR) diffuse fractures arrangement results from mechanical stratigraphy and tectonic history during failure. Thus, modelling Discrete Fracture Network (DFN) requires to understand and to account for fracture relationships at bed-interface (abutment or crosscutting) in 3D through time (loading path). However, sampling fractures data meaningfully in subsurface has always been a challenge for geologist due to data scarcity.
To better understand and forecast fracture networks in stratified rocks, we study outcrops with a focus on geometric relationships between stratigraphic interfaces and fractures. This paper presents an original python toolbox called FracAbut. It is composed of 1 main and 2 auxiliary codes that quantify the geometric relation between fractures and stratigraphic interfaces from 1D (wells, scan-line) and 2D (digital image, photographs data). We calculate the Interface Impedance (II) that accounts for fracture abutment (crossing or not), persistence (single- or multi-bed) and propagation polarity (upward or downward). For each stratigraphic interface FracAbut provides information on fractures (type, number) and interface sensitivity (coupling strength).
First, we apply FracAbut on synthetic case studies, then, on naturally fractured and stratified carbonates in Berat, Albania. Using both 1D scan-line and 2D outcrop photograph, we show that i) a mechanical interface can have different coupling above and below based on propagation polarity, ii) FracAbut results can give useful insight on fracture transmissivity, iii) FracAbut is fast and efficient to quantify fracture patterns and classify mechanical interface impact; iv) they are no relation between bed thickness and fracture propagation.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.