Niely Galeão da Rosa Moraes , Alicia da Silva Bonifácio , Fernanda Oliveira Reis , Thais dos Anjos Velho , Paula Florencio Ramires , Rodrigo de Lima Brum , Julia Oliveira Penteado , Flávio Manoel Rodrigues Da Silva Júnior
{"title":"巴西南部煤矿开采区附近居民口腔细胞中的微核频率及其空间分布情况","authors":"Niely Galeão da Rosa Moraes , Alicia da Silva Bonifácio , Fernanda Oliveira Reis , Thais dos Anjos Velho , Paula Florencio Ramires , Rodrigo de Lima Brum , Julia Oliveira Penteado , Flávio Manoel Rodrigues Da Silva Júnior","doi":"10.1016/j.mrgentox.2024.503783","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction and burning of coal release genotoxic pollutants, and understanding the relationship between genetic damage and the spatial distribution of residences in coal-using regions is crucial. The study aimed to conduct a spatial analysis of genotoxic damage through the of micronuclei (MNs) number and their proximity to coal mining/burning in the largest coal exploration region in Brazil. In this study, the detection of genotoxic damage was performed using the MN assay in oral cells of residents exposed to coal mining activities. Spatial analysis was conducted using QGIS 3.28.10 based on information obtained from a questionnaire administered to the population. Multiple linear regression analysis was carried out to assess the influence of the distance from residential areas to polluting sources on the number of MNs found. Additionally, Spearman's correlation was performed to identify the strength and direction of the association between the frequency of MNs and each of the polluting sources. A total of 147 MNs were quantified among all participants in the coal mining region. Notably, residents living within 2 km and 10 km of pollution sources exhibited the highest prevalence of MNs. The analysis demonstrated a significant correlation between closer proximity to pollution sources and increased MN frequency, underscoring the spatial relationship between these sources and genotoxic damage. Environmental pollutants from anthropogenic sources present a major health risk, potentially leading to irreversible damage. The spatial analysis in this study highlights the importance of targeted public policies. These policies should aim for a sustainable balance between economic development and public health, promoting effective measures to mitigate environmental impacts and protect community health.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"897 ","pages":"Article 503783"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequencies of micronuclei in buccal cells and their spatial distribution in a population living in proximity to coal mining areas in southern Brazil\",\"authors\":\"Niely Galeão da Rosa Moraes , Alicia da Silva Bonifácio , Fernanda Oliveira Reis , Thais dos Anjos Velho , Paula Florencio Ramires , Rodrigo de Lima Brum , Julia Oliveira Penteado , Flávio Manoel Rodrigues Da Silva Júnior\",\"doi\":\"10.1016/j.mrgentox.2024.503783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extraction and burning of coal release genotoxic pollutants, and understanding the relationship between genetic damage and the spatial distribution of residences in coal-using regions is crucial. The study aimed to conduct a spatial analysis of genotoxic damage through the of micronuclei (MNs) number and their proximity to coal mining/burning in the largest coal exploration region in Brazil. In this study, the detection of genotoxic damage was performed using the MN assay in oral cells of residents exposed to coal mining activities. Spatial analysis was conducted using QGIS 3.28.10 based on information obtained from a questionnaire administered to the population. Multiple linear regression analysis was carried out to assess the influence of the distance from residential areas to polluting sources on the number of MNs found. Additionally, Spearman's correlation was performed to identify the strength and direction of the association between the frequency of MNs and each of the polluting sources. A total of 147 MNs were quantified among all participants in the coal mining region. Notably, residents living within 2 km and 10 km of pollution sources exhibited the highest prevalence of MNs. The analysis demonstrated a significant correlation between closer proximity to pollution sources and increased MN frequency, underscoring the spatial relationship between these sources and genotoxic damage. Environmental pollutants from anthropogenic sources present a major health risk, potentially leading to irreversible damage. The spatial analysis in this study highlights the importance of targeted public policies. These policies should aim for a sustainable balance between economic development and public health, promoting effective measures to mitigate environmental impacts and protect community health.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"897 \",\"pages\":\"Article 503783\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000597\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000597","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Frequencies of micronuclei in buccal cells and their spatial distribution in a population living in proximity to coal mining areas in southern Brazil
The extraction and burning of coal release genotoxic pollutants, and understanding the relationship between genetic damage and the spatial distribution of residences in coal-using regions is crucial. The study aimed to conduct a spatial analysis of genotoxic damage through the of micronuclei (MNs) number and their proximity to coal mining/burning in the largest coal exploration region in Brazil. In this study, the detection of genotoxic damage was performed using the MN assay in oral cells of residents exposed to coal mining activities. Spatial analysis was conducted using QGIS 3.28.10 based on information obtained from a questionnaire administered to the population. Multiple linear regression analysis was carried out to assess the influence of the distance from residential areas to polluting sources on the number of MNs found. Additionally, Spearman's correlation was performed to identify the strength and direction of the association between the frequency of MNs and each of the polluting sources. A total of 147 MNs were quantified among all participants in the coal mining region. Notably, residents living within 2 km and 10 km of pollution sources exhibited the highest prevalence of MNs. The analysis demonstrated a significant correlation between closer proximity to pollution sources and increased MN frequency, underscoring the spatial relationship between these sources and genotoxic damage. Environmental pollutants from anthropogenic sources present a major health risk, potentially leading to irreversible damage. The spatial analysis in this study highlights the importance of targeted public policies. These policies should aim for a sustainable balance between economic development and public health, promoting effective measures to mitigate environmental impacts and protect community health.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.