{"title":"涉及ψ-卡普托分数导数的时间分数四阶二维扩散波方程的离散谱方法","authors":"M.H. Heydari , M. Razzaghi","doi":"10.1016/j.rinam.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100466"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative\",\"authors\":\"M.H. Heydari , M. Razzaghi\",\"doi\":\"10.1016/j.rinam.2024.100466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100466\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative
In this work, the -Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, , is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the -Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the -Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.