涉及ψ-卡普托分数导数的时间分数四阶二维扩散波方程的离散谱方法

IF 1.4 Q2 MATHEMATICS, APPLIED
M.H. Heydari , M. Razzaghi
{"title":"涉及ψ-卡普托分数导数的时间分数四阶二维扩散波方程的离散谱方法","authors":"M.H. Heydari ,&nbsp;M. Razzaghi","doi":"10.1016/j.rinam.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100466"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative\",\"authors\":\"M.H. Heydari ,&nbsp;M. Razzaghi\",\"doi\":\"10.1016/j.rinam.2024.100466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100466\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

ψ-卡普托分数导数是经典卡普托分数导数的广义化,其中充分可微函数的分数导数是相对于另一个严格递增函数ψ定义的,本研究利用ψ-卡普托分数导数定义时间分数四阶二维扩散波方程。为求解该方程,开发了一种切比雪夫-高斯-洛巴托方案。这样,就得出了切比雪夫多项式的 ψ-Riemann-Liouville 分数积分的新运算矩阵。通过有限离散切比雪夫级数,并利用所表达的运算矩阵,确定从近似ψ-卡普托分数导数项中提取的代数系统的解,从而获得方程的解。通过求解两个示例检验了所建立方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative

In this work, the ψ-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, ψ, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the ψ-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the ψ-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信