法学硕士擅长结构化产出吗?评估法律硕士结构化产出能力的基准

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yu Liu , Duantengchuan Li , Kaili Wang , Zhuoran Xiong , Fobo Shi , Jian Wang , Bing Li , Bo Hang
{"title":"法学硕士擅长结构化产出吗?评估法律硕士结构化产出能力的基准","authors":"Yu Liu ,&nbsp;Duantengchuan Li ,&nbsp;Kaili Wang ,&nbsp;Zhuoran Xiong ,&nbsp;Fobo Shi ,&nbsp;Jian Wang ,&nbsp;Bing Li ,&nbsp;Bo Hang","doi":"10.1016/j.ipm.2024.103809","DOIUrl":null,"url":null,"abstract":"<div><p>Existing benchmarks for Large Language Models (LLMs) mostly focus on general or specific domain capabilities, overlooking structured output capabilities. We introduce SoEval, a benchmark for assessing LLMs’ ability to generate structured outputs like JSON, XML, and lists. SoEval contains 3.7K entries in Chinese and English, covering 13 types of structured output tasks across 20 subjects. In experiments, we found that while current mainstream LLMs have deficiencies in structured output, GPT-4 outperforms them in this aspect. GPT-4 achieved an average score of 0.4 on SoEval, representing a 24% enhancement over the next best-performing model. At the same time, the performance of current mainstream models on English tasks is also better than on Chinese tasks. We also report the performance of mainstream large models on different structured output types and task subjects. The benchmark construction code and SoEval dataset are open-sourced at <span>https://github.com/MoranCoder95/SoEval</span><svg><path></path></svg>.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are LLMs good at structured outputs? A benchmark for evaluating structured output capabilities in LLMs\",\"authors\":\"Yu Liu ,&nbsp;Duantengchuan Li ,&nbsp;Kaili Wang ,&nbsp;Zhuoran Xiong ,&nbsp;Fobo Shi ,&nbsp;Jian Wang ,&nbsp;Bing Li ,&nbsp;Bo Hang\",\"doi\":\"10.1016/j.ipm.2024.103809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Existing benchmarks for Large Language Models (LLMs) mostly focus on general or specific domain capabilities, overlooking structured output capabilities. We introduce SoEval, a benchmark for assessing LLMs’ ability to generate structured outputs like JSON, XML, and lists. SoEval contains 3.7K entries in Chinese and English, covering 13 types of structured output tasks across 20 subjects. In experiments, we found that while current mainstream LLMs have deficiencies in structured output, GPT-4 outperforms them in this aspect. GPT-4 achieved an average score of 0.4 on SoEval, representing a 24% enhancement over the next best-performing model. At the same time, the performance of current mainstream models on English tasks is also better than on Chinese tasks. We also report the performance of mainstream large models on different structured output types and task subjects. The benchmark construction code and SoEval dataset are open-sourced at <span>https://github.com/MoranCoder95/SoEval</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324001687\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324001687","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的大型语言模型(LLM)基准大多侧重于一般或特定领域的能力,而忽略了结构化输出能力。我们介绍 SoEval,这是一个评估 LLM 生成 JSON、XML 和列表等结构化输出能力的基准。SoEval 包含 3.7K 个中英文条目,涵盖 20 个科目的 13 种结构化输出任务。在实验中,我们发现目前主流的 LLM 在结构化输出方面存在不足,而 GPT-4 在这方面的表现优于它们。GPT-4 在 SoEval 上的平均得分达到了 0.4,比表现次佳的模型提高了 24%。同时,当前主流模型在英文任务上的表现也优于中文任务。我们还报告了主流大型模型在不同结构化输出类型和任务主题上的表现。基准构建代码和 SoEval 数据集开源于 https://github.com/MoranCoder95/SoEval。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are LLMs good at structured outputs? A benchmark for evaluating structured output capabilities in LLMs

Existing benchmarks for Large Language Models (LLMs) mostly focus on general or specific domain capabilities, overlooking structured output capabilities. We introduce SoEval, a benchmark for assessing LLMs’ ability to generate structured outputs like JSON, XML, and lists. SoEval contains 3.7K entries in Chinese and English, covering 13 types of structured output tasks across 20 subjects. In experiments, we found that while current mainstream LLMs have deficiencies in structured output, GPT-4 outperforms them in this aspect. GPT-4 achieved an average score of 0.4 on SoEval, representing a 24% enhancement over the next best-performing model. At the same time, the performance of current mainstream models on English tasks is also better than on Chinese tasks. We also report the performance of mainstream large models on different structured output types and task subjects. The benchmark construction code and SoEval dataset are open-sourced at https://github.com/MoranCoder95/SoEval.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信