ANA ISABEL NARVAEZ VILLOTA;ARMANDO JAIME USTARIZ FARFAN;LUIS FERNANDO DIAZ CADAVID
{"title":"基于以太网技术的智能电网模型评估连接策略","authors":"ANA ISABEL NARVAEZ VILLOTA;ARMANDO JAIME USTARIZ FARFAN;LUIS FERNANDO DIAZ CADAVID","doi":"10.1109/TLA.2024.10562238","DOIUrl":null,"url":null,"abstract":"A simulation strategy that enables data transmission between the modeled components of a Smart Grid is proposed in this paper. The proposed simulation strategy, referred to as the connectivity strategy, enables the integration of a physical communication network into Smart Grids simulations. The connectivity strategy comprises three steps: selection of Smart Grids functionality, data transmission over a TCP/IP network, and connectivity strategy evaluation. Each step is described to ensure transparency and reproducibility in Smart Grid simulations, addressing the limitations associated with the lack of specifications when a communication network is implemented into power systems simulations. Furthermore, a Hardware-in-the-loop (HIL) approach is presented for developing and evaluating the proposed connectivity strategy using the HIL technique. Through this approach, the strategy is validated by establishing the communication between simulation and embedded systems via a physical Ethernet network. In a case study, the use of the connectivity strategy to simulate a distribution system automation (DA) functionality is demonstrated. This simulation allows the evaluation of protection schemes in a Smart Grid using MATLAB/Simulink and a Texas Instruments development kit. Results show that the proposed connectivity strategy could estimate the communication delays for different simulation scenarios.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10562238","citationCount":"0","resultStr":"{\"title\":\"A Connectivity Strategy for the Evaluation of Smart Grid Models Based on the Ethernet Technology\",\"authors\":\"ANA ISABEL NARVAEZ VILLOTA;ARMANDO JAIME USTARIZ FARFAN;LUIS FERNANDO DIAZ CADAVID\",\"doi\":\"10.1109/TLA.2024.10562238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation strategy that enables data transmission between the modeled components of a Smart Grid is proposed in this paper. The proposed simulation strategy, referred to as the connectivity strategy, enables the integration of a physical communication network into Smart Grids simulations. The connectivity strategy comprises three steps: selection of Smart Grids functionality, data transmission over a TCP/IP network, and connectivity strategy evaluation. Each step is described to ensure transparency and reproducibility in Smart Grid simulations, addressing the limitations associated with the lack of specifications when a communication network is implemented into power systems simulations. Furthermore, a Hardware-in-the-loop (HIL) approach is presented for developing and evaluating the proposed connectivity strategy using the HIL technique. Through this approach, the strategy is validated by establishing the communication between simulation and embedded systems via a physical Ethernet network. In a case study, the use of the connectivity strategy to simulate a distribution system automation (DA) functionality is demonstrated. This simulation allows the evaluation of protection schemes in a Smart Grid using MATLAB/Simulink and a Texas Instruments development kit. Results show that the proposed connectivity strategy could estimate the communication delays for different simulation scenarios.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10562238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10562238/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10562238/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Connectivity Strategy for the Evaluation of Smart Grid Models Based on the Ethernet Technology
A simulation strategy that enables data transmission between the modeled components of a Smart Grid is proposed in this paper. The proposed simulation strategy, referred to as the connectivity strategy, enables the integration of a physical communication network into Smart Grids simulations. The connectivity strategy comprises three steps: selection of Smart Grids functionality, data transmission over a TCP/IP network, and connectivity strategy evaluation. Each step is described to ensure transparency and reproducibility in Smart Grid simulations, addressing the limitations associated with the lack of specifications when a communication network is implemented into power systems simulations. Furthermore, a Hardware-in-the-loop (HIL) approach is presented for developing and evaluating the proposed connectivity strategy using the HIL technique. Through this approach, the strategy is validated by establishing the communication between simulation and embedded systems via a physical Ethernet network. In a case study, the use of the connectivity strategy to simulate a distribution system automation (DA) functionality is demonstrated. This simulation allows the evaluation of protection schemes in a Smart Grid using MATLAB/Simulink and a Texas Instruments development kit. Results show that the proposed connectivity strategy could estimate the communication delays for different simulation scenarios.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.