{"title":"胰头癌和胰体癌/胰尾癌患者的微生物群和代谢物变化。","authors":"Yiqing Zhu, Xiao Liang, Guoming Zhang, Feng Li, Jianwei Xu, Ruiguang Ma, Xinyu Chen, Miaomiao Ma, Yifan Wang, Changxu Chen, Haoyun Tang, Lixiang Li, Zhen Li","doi":"10.1111/cas.16238","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, <i>Bradyrhizobium</i> was increased while <i>Corynebacterium</i> and <i>Ruminococcus</i> were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. <i>Shuttleworthia</i>, <i>Bacillus</i>, and <i>Bifidobacterium</i> were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, <i>Ileibacterium</i> was increased whereas <i>Pseudoxanthomonas</i> was decreased in Head T and Body/Tail T, and <i>Lactobacillus</i> was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. <i>Eubacterium</i> decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. <i>Bacillus</i> decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 8","pages":"2738-2750"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbiota and metabolite alterations in pancreatic head and body/tail cancer patients\",\"authors\":\"Yiqing Zhu, Xiao Liang, Guoming Zhang, Feng Li, Jianwei Xu, Ruiguang Ma, Xinyu Chen, Miaomiao Ma, Yifan Wang, Changxu Chen, Haoyun Tang, Lixiang Li, Zhen Li\",\"doi\":\"10.1111/cas.16238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, <i>Bradyrhizobium</i> was increased while <i>Corynebacterium</i> and <i>Ruminococcus</i> were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. <i>Shuttleworthia</i>, <i>Bacillus</i>, and <i>Bifidobacterium</i> were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, <i>Ileibacterium</i> was increased whereas <i>Pseudoxanthomonas</i> was decreased in Head T and Body/Tail T, and <i>Lactobacillus</i> was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. <i>Eubacterium</i> decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. <i>Bacillus</i> decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 8\",\"pages\":\"2738-2750\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
胰头癌(PHC)和胰体/尾癌(PBTC)具有不同的临床和生物学行为。关于胰头癌和胰体/尾癌的微生物和代谢差异尚未进行研究。研究人员利用 16S rRNA 扩增子测序和非靶向代谢组学对 15 例 PHC 和 8 例 PBTC 组织及其匹配的非肿瘤组织的胰腺微生物群和代谢组进行了表征。在属种水平上,与匹配的非肿瘤组织(Head N)相比,PHC 组织(Head T)中的巴西根瘤菌(Bradyrhizobium)显著增加,而棒状杆菌(Corynebacterium)和瘤球菌(Ruminococcus)显著减少。与匹配的非肿瘤组织(身体/尾部 N)相比,PBTC 组织(身体/尾部 T)中的梭状芽孢杆菌、芽孢杆菌和双歧杆菌明显减少。在头部 T 和身体/尾部 T 中,油杆菌明显增加,而假黄单胞菌减少;在头部 T 中,乳酸杆菌增加,但在身体/尾部 T 中减少。然而,身体/尾部 T 和身体/尾部 N 之间只有 4 个差异代谢物,它们与甘油磷脂代谢和自噬途径有关。PHC和PBTC中的差异代谢物通常富集于癌症途径中的α-亚麻酸代谢和胆碱代谢。头部 T 中减少的 Eubacterium 与亚油酸的减少呈正相关,而与花生四烯酸肉碱和硬脂酰肉碱的增加呈负相关。体/尾 T 中减少的芽孢杆菌与左旋肉碱的增加呈负相关。这些微生物群和代谢物值得进一步研究,以揭示它们在 PHC 和 PBTC 发病机制中的作用,为未来的治疗提供线索。
Microbiota and metabolite alterations in pancreatic head and body/tail cancer patients
Pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, Bradyrhizobium was increased while Corynebacterium and Ruminococcus were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. Shuttleworthia, Bacillus, and Bifidobacterium were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, Ileibacterium was increased whereas Pseudoxanthomonas was decreased in Head T and Body/Tail T, and Lactobacillus was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. Eubacterium decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. Bacillus decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.