Andre Augusto Botêga Silva, Denise Frediani Barbeiro, Suely Kunimi Kubo Ariga, Hermes Vieira Barbeiro, Ana Maria Mendonça Coelho, Eleazar Chaib, Marisa Passarelli, Francisco Garcia Soriano
{"title":"败血症休克LPS耐受性可保护线粒体的生物生成和呼吸。","authors":"Andre Augusto Botêga Silva, Denise Frediani Barbeiro, Suely Kunimi Kubo Ariga, Hermes Vieira Barbeiro, Ana Maria Mendonça Coelho, Eleazar Chaib, Marisa Passarelli, Francisco Garcia Soriano","doi":"10.1097/SHK.0000000000002399","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Mitochondrial dysfunction is a recognized feature of sepsis, characterized by ultrastructural damage, diminished oxidative phosphorylation, and depletion of mitochondrial antioxidant capacity observed in deceased septic patients. LPS tolerance induces a controlled response to sepsis. This study aimed to evaluate the function of tolerant mitochondria after cecal ligation and puncture (CLP)-induced sepsis. Mytochondrial oxygen consumption was determined using polarography. Extraction and quantification of RNA for the expression of Tfam, Nrf-1, and Ppargc-1α, and respiratory complex activity were measured. CLP-tolerant animals presented preserved respiratory rates of S3 and S4 and a ratio of respiratory control (RCR) compared to CLP-nontolerant animals with reduced oxidative phosphorylation and increased uncoupled respiration. Complex I Vmax was reduced in septic animals; however, CLP animals sustained normal Vmax. Mitochondrial biogenesis was preserved in CLP-tolerant animals compared to the CLP-nontolerant group, likely due to increased TFAM expression. LPS tolerance protected septic animals from mitochondrial dysfunction, favoring mitochondrial biogenesis and preserving mitochondrial respiration and respiratory complex I activity.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"410-415"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEPTIC SHOCK: LPS TOLERANCE PROTECTS MITOCHONDRIAL BIOGENESIS AND RESPIRATION.\",\"authors\":\"Andre Augusto Botêga Silva, Denise Frediani Barbeiro, Suely Kunimi Kubo Ariga, Hermes Vieira Barbeiro, Ana Maria Mendonça Coelho, Eleazar Chaib, Marisa Passarelli, Francisco Garcia Soriano\",\"doi\":\"10.1097/SHK.0000000000002399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Mitochondrial dysfunction is a recognized feature of sepsis, characterized by ultrastructural damage, diminished oxidative phosphorylation, and depletion of mitochondrial antioxidant capacity observed in deceased septic patients. LPS tolerance induces a controlled response to sepsis. This study aimed to evaluate the function of tolerant mitochondria after cecal ligation and puncture (CLP)-induced sepsis. Mytochondrial oxygen consumption was determined using polarography. Extraction and quantification of RNA for the expression of Tfam, Nrf-1, and Ppargc-1α, and respiratory complex activity were measured. CLP-tolerant animals presented preserved respiratory rates of S3 and S4 and a ratio of respiratory control (RCR) compared to CLP-nontolerant animals with reduced oxidative phosphorylation and increased uncoupled respiration. Complex I Vmax was reduced in septic animals; however, CLP animals sustained normal Vmax. Mitochondrial biogenesis was preserved in CLP-tolerant animals compared to the CLP-nontolerant group, likely due to increased TFAM expression. LPS tolerance protected septic animals from mitochondrial dysfunction, favoring mitochondrial biogenesis and preserving mitochondrial respiration and respiratory complex I activity.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"410-415\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002399\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002399","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
SEPTIC SHOCK: LPS TOLERANCE PROTECTS MITOCHONDRIAL BIOGENESIS AND RESPIRATION.
Abstract: Mitochondrial dysfunction is a recognized feature of sepsis, characterized by ultrastructural damage, diminished oxidative phosphorylation, and depletion of mitochondrial antioxidant capacity observed in deceased septic patients. LPS tolerance induces a controlled response to sepsis. This study aimed to evaluate the function of tolerant mitochondria after cecal ligation and puncture (CLP)-induced sepsis. Mytochondrial oxygen consumption was determined using polarography. Extraction and quantification of RNA for the expression of Tfam, Nrf-1, and Ppargc-1α, and respiratory complex activity were measured. CLP-tolerant animals presented preserved respiratory rates of S3 and S4 and a ratio of respiratory control (RCR) compared to CLP-nontolerant animals with reduced oxidative phosphorylation and increased uncoupled respiration. Complex I Vmax was reduced in septic animals; however, CLP animals sustained normal Vmax. Mitochondrial biogenesis was preserved in CLP-tolerant animals compared to the CLP-nontolerant group, likely due to increased TFAM expression. LPS tolerance protected septic animals from mitochondrial dysfunction, favoring mitochondrial biogenesis and preserving mitochondrial respiration and respiratory complex I activity.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.